Suppr超能文献

多子群上的公平感知类不平衡学习

Fairness-Aware Class Imbalanced Learning on Multiple Subgroups.

作者信息

Tarzanagh Davoud Ataee, Hou Bojian, Tong Boning, Long Qi, Shen Li

机构信息

University of Pennsylvania.

出版信息

Proc Mach Learn Res. 2023 Aug;216:2123-2133.

Abstract

We present a novel Bayesian-based optimization framework that addresses the challenge of generalization in overparameterized models when dealing with imbalanced subgroups and limited samples per subgroup. Our proposed tri-level optimization framework utilizes predictors, which are trained on a small amount of data, as well as a fair and class-balanced predictor at the middle and lower levels. To effectively overcome saddle points for minority classes, our lower-level formulation incorporates sharpness-aware minimization. Meanwhile, at the upper level, the framework dynamically adjusts the loss function based on validation loss, ensuring a close alignment between the predictor and local predictors. Theoretical analysis demonstrates the framework's ability to enhance classification and fairness generalization, potentially resulting in improvements in the generalization bound. Empirical results validate the superior performance of our tri-level framework compared to existing state-of-the-art approaches. The source code can be found at https://github.com/PennShenLab/FACIMS.

摘要

我们提出了一种基于贝叶斯的新型优化框架,该框架在处理不平衡子组且每个子组样本有限的情况下,应对过参数化模型中的泛化挑战。我们提出的三层优化框架利用在少量数据上训练的预测器,以及在中层和下层的公平且类平衡的预测器。为了有效克服少数类的鞍点,我们的下层公式纳入了锐度感知最小化。同时,在上层,该框架根据验证损失动态调整损失函数,确保预测器与局部预测器紧密对齐。理论分析表明该框架具有增强分类和公平泛化的能力,可能会改进泛化界。实证结果验证了我们的三层框架相对于现有最先进方法的卓越性能。源代码可在https://github.com/PennShenLab/FACIMS上找到。

相似文献

2
Generalized Parametric Contrastive Learning.广义参数对比学习
IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):7463-7474. doi: 10.1109/TPAMI.2023.3278694. Epub 2024 Nov 6.
4
Learning With Multiclass AUC: Theory and Algorithms.多类别AUC学习:理论与算法
IEEE Trans Pattern Anal Mach Intell. 2022 Nov;44(11):7747-7763. doi: 10.1109/TPAMI.2021.3101125. Epub 2022 Oct 4.
5
Class-imbalanced complementary-label learning via weighted loss.基于加权损失的类别不平衡互补标签学习。
Neural Netw. 2023 Sep;166:555-565. doi: 10.1016/j.neunet.2023.07.030. Epub 2023 Jul 28.
6
Generative Inference Network for Imbalanced Domain Generalization.用于不平衡领域泛化的生成推理网络
IEEE Trans Image Process. 2023;32:1694-1704. doi: 10.1109/TIP.2023.3251103. Epub 2023 Mar 9.
10
Balanced Federated Semisupervised Learning With Fairness-Aware Pseudo-Labeling.基于公平感知伪标签的平衡联邦半监督学习
IEEE Trans Neural Netw Learn Syst. 2024 Jul;35(7):9395-9407. doi: 10.1109/TNNLS.2022.3233093. Epub 2024 Jul 8.

本文引用的文献

4
Cost-Sensitive Learning of Deep Feature Representations From Imbalanced Data.从不平衡数据中进行深度特征表示的成本敏感学习。
IEEE Trans Neural Netw Learn Syst. 2018 Aug;29(8):3573-3587. doi: 10.1109/TNNLS.2017.2732482. Epub 2017 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验