Suppr超能文献

分析推特上痴呆症护理者的经历:一种词加权主题建模方法。

Analyzing Dementia Caregivers' Experiences on Twitter: A Term-Weighted Topic Modeling Approach.

作者信息

Feng Yanbo, Hou Bojian, Klein Ari, O'Connor Karen, Chen Jiong, Mondragóon Andrées, Yang Shu, Gonzalez-Hernandez Graciela, Shen Li

机构信息

Unversity of Pennsylvania, Philadelphia, PA, USA.

Cedars-Sinai Medical Center, Los Angeles, CA, USA.

出版信息

AMIA Annu Symp Proc. 2025 May 22;2024:407-416. eCollection 2024.

Abstract

Dementia profoundly impacts patients and their families, making it essential to understand the experiences and concerns offamily caregivers for enhanced support and care. This study introduces a novel approach to analyzing tweets from individuals whose family members suffer from dementia. We preprocessed our collected Twitter (now X) data using advanced natural language processing techniques and enhanced conventional topic model-Gibbs Sampling Dirichlet Multinomial Mixture Model (GSDMM)-with term-weighting strategies to improve topic clarity. This enhanced approach enabled the identification of key topics among dementia-affected families, offering semantically rich and contextually coherent topics, demonstrating that our method outperforms the state-of-the-art BERTopic model in clarity and consistency. Leveraging ChatGPT 4 alongside two human experts, we uncovered the multifaceted challenges faced by family caregivers. This work aims to provide healthcare professionals, researchers, and support organizations with a valuable tool to better understand and address the needs offamily caregivers.

摘要

痴呆症对患者及其家庭产生了深远影响,因此了解家庭护理人员的经历和担忧对于加强支持和护理至关重要。本研究引入了一种新颖的方法来分析家庭成员患有痴呆症的个人所发的推文。我们使用先进的自然语言处理技术对收集到的推特(现称X)数据进行预处理,并通过词加权策略改进传统主题模型——吉布斯采样狄利克雷多项式混合模型(GSDMM),以提高主题清晰度。这种改进后的方法能够识别受痴呆症影响家庭中的关键主题,提供语义丰富且上下文连贯的主题,表明我们的方法在清晰度和一致性方面优于当前最先进的BERTopic模型。我们借助ChatGPT 4以及两位人类专家,揭示了家庭护理人员面临的多方面挑战。这项工作旨在为医疗保健专业人员、研究人员和支持组织提供一个有价值的工具,以便更好地理解和满足家庭护理人员的需求。

相似文献

本文引用的文献

4
2023 Alzheimer's disease facts and figures.2023 年阿尔茨海默病事实和数据。
Alzheimers Dement. 2023 Apr;19(4):1598-1695. doi: 10.1002/alz.13016. Epub 2023 Mar 14.
7
Using topic modeling to detect cellular crosstalk in scRNA-seq.利用主题建模检测 scRNA-seq 中的细胞串扰。
PLoS Comput Biol. 2022 Apr 8;18(4):e1009975. doi: 10.1371/journal.pcbi.1009975. eCollection 2022 Apr.
10
Learning With Interpretable Structure From Gated RNN.基于门控 RNN 的可解释结构学习。
IEEE Trans Neural Netw Learn Syst. 2020 Jul;31(7):2267-2279. doi: 10.1109/TNNLS.2020.2967051. Epub 2020 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验