Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan.
Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Japan.
Front Neural Circuits. 2024 May 17;18:1409993. doi: 10.3389/fncir.2024.1409993. eCollection 2024.
For neural circuit construction in the brain, coarse neuronal connections are assembled prenatally following genetic programs, being reorganized postnatally by activity-dependent mechanisms to implement area-specific computational functions. Activity-dependent dendrite patterning is a critical component of neural circuit reorganization, whereby individual neurons rearrange and optimize their presynaptic partners. In the rodent primary somatosensory cortex (barrel cortex), driven by thalamocortical inputs, layer 4 (L4) excitatory neurons extensively remodel their basal dendrites at neonatal stages to ensure specific responses of barrels to the corresponding individual whiskers. This feature of barrel cortex L4 neurons makes them an excellent model, significantly contributing to unveiling the activity-dependent nature of dendrite patterning and circuit reorganization. In this review, we summarize recent advances in our understanding of the activity-dependent mechanisms underlying dendrite patterning. Our focus lays on the mechanisms revealed by time-lapse imaging, and the role of activity-dependent Golgi apparatus polarity regulation in dendrite patterning. We also discuss the type of neuronal activity that could contribute to dendrite patterning and hence connectivity.
对于大脑中的神经回路构建,粗的神经元连接在产前根据遗传程序组装,然后在产后通过活动依赖性机制进行重组,以实现特定区域的计算功能。活动依赖性树突模式形成是神经回路重组的一个关键组成部分,在此过程中,单个神经元会重新排列并优化其突触前伙伴。在啮齿动物初级体感皮层(桶状皮层)中,由丘脑皮质输入驱动,第 4 层(L4)兴奋性神经元在新生儿阶段广泛重塑其基底树突,以确保桶状结构对相应单个触须的特异性反应。L4 神经元的这种特性使它们成为一个极好的模型,极大地促进了对树突模式形成和回路重组的活动依赖性本质的揭示。在这篇综述中,我们总结了对树突模式形成的活动依赖性机制的理解的最新进展。我们的重点放在延时成像揭示的机制上,以及活动依赖性高尔基器极性调节在树突模式形成中的作用。我们还讨论了可能有助于树突模式形成和连接的神经元活动类型。