Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Shizuoka, Japan
Division of Visual Information Processing, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.
J Neurosci. 2020 Sep 30;40(40):7637-7650. doi: 10.1523/JNEUROSCI.1116-20.2020. Epub 2020 Sep 4.
Spatially-organized spontaneous activity is a characteristic feature of developing mammalian sensory systems. However, the transitions of spontaneous-activity spatial organization during development and related mechanisms remain largely unknown. We reported previously that layer 4 (L4) glutamatergic neurons in the mouse barrel cortex exhibit spontaneous activity with a patchwork-type pattern at postnatal day (P)5, which is during barrel formation. In the current work, we revealed that spontaneous activity in mouse barrel-cortex L4 glutamatergic neurons exhibits at least three phases during the first two weeks of postnatal development. Phase I activity has a patchwork-type pattern and is observed not only at P5, but also P1, before barrel formation. Phase II is found at P9, by which time barrel formation is completed, and exhibits broadly synchronized activity across barrel borders. Phase III emerges around P11 when L4-neuron activity is desynchronized. The Phase I activity, but not Phase II or III activity, is blocked by thalamic inhibition, demonstrating that the Phase I to II transition is associated with loss of thalamic dependency. Dominant-negative (DN)-Rac1 expression in L4 neurons hampers the Phase II to III transition. It also suppresses developmental increases in spine density and excitatory synapses of L4 neurons in the second postnatal week, suggesting that Rac1-mediated synapse maturation could underlie the Phase II to III transition. Our findings revealed the presence of distinct mechanisms for Phase I to II and Phase II to III transition. They also highlighted the role of a small GTPase in the developmental desynchronization of cortical spontaneous activity. Developing neocortex exhibits spatially-organized spontaneous activity, which plays a critical role in cortical circuit development. The features of spontaneous-activity spatial organization and the mechanisms underlying its changes during development remain largely unknown. In the present study, using two-photon imaging, we revealed three phases (Phases I, II, and III) of spontaneous activity in barrel-cortex layer 4 (L4) glutamatergic neurons during the first two postnatal weeks. We also demonstrated the presence of distinct mechanisms underlying phase transitions. Phase I to II shift arose from the switch in the L4-neuron driving source, and Phase II to III transition relied on L4-neuron Rac1 activity. These results provide new insights into the principles of developmental transitions of neocortical spontaneous-activity spatial patterns.
空间组织的自发活动是哺乳动物感觉系统发育的一个特征。然而,自发活动空间组织在发育过程中的转变及其相关机制在很大程度上仍然未知。我们之前曾报道过,在出生后第 5 天(P5),即桶状皮层形成期间,小鼠皮层 4 层(L4)谷氨酸能神经元表现出具有拼凑样模式的自发活动。在目前的工作中,我们揭示了在出生后发育的头两周内,小鼠桶状皮层 L4 谷氨酸能神经元的自发活动至少经历了三个阶段。第一阶段的活动具有拼凑样模式,不仅在 P5 时观察到,而且在桶状结构形成之前的 P1 时也观察到。第二阶段出现在 P9 时,此时桶状结构已经形成,表现为跨越桶状边界的广泛同步活动。第三阶段出现在 P11 左右,此时 L4 神经元活动去同步。第一阶段的活动,而不是第二或第三阶段的活动,被丘脑抑制所阻断,表明第一阶段到第二阶段的转变与丘脑依赖性的丧失有关。在 L4 神经元中表达显性负(DN)Rac1 会阻碍第二阶段到第三阶段的转变。它还抑制了第二出生周 L4 神经元中棘突密度和兴奋性突触的发育增加,表明 Rac1 介导的突触成熟可能是第二阶段到第三阶段转变的基础。我们的发现揭示了第一阶段到第二阶段和第二阶段到第三阶段转变的存在不同的机制。它们还强调了小 GTPase 在皮质自发活动发育去同步中的作用。发育中的新皮层表现出空间组织的自发活动,这在皮质回路发育中起着关键作用。自发活动空间组织的特征及其在发育过程中变化的机制在很大程度上仍然未知。在本研究中,我们使用双光子成像技术,在出生后前两周揭示了桶状皮层 4 层(L4)谷氨酸能神经元中自发活动的三个阶段(第一阶段、第二阶段和第三阶段)。我们还证明了相位转变存在不同的机制。从 L4 神经元驱动源的转变中产生了第一阶段到第二阶段的转变,而第二阶段到第三阶段的转变依赖于 L4 神经元 Rac1 活性。这些结果为新皮层自发活动空间模式发育转变的原则提供了新的见解。