Conca Andres, Ferreiro-Vila Elías, Cebollada Alfonso, Martin-Gonzalez Marisol
Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC) Isaac Newton, 8, 28760 Tres Cantos, Madrid, Spain.
ACS Appl Electron Mater. 2023 Apr 4;6(5):2799-2806. doi: 10.1021/acsaelm.2c01772. eCollection 2024 May 28.
The power factor of highly boron-doped nanocrystalline Si thin films with controlled doping concentration is investigated. We achieve a high degree of tuning of boron content with a charge carrier concentration from 10 to 10/cm and with the electrical conductivity by varying the boron magnetron power from 10 to 60 W while maintaining the power of a SiB source constant during codeposition from two independent sputtering sources. Along with the increase in the electrical conductivity with increased boron doping, we observe a steady decrease in the Seebeck coefficient from 500 to 100 μV/K. These values result in power factors that exhibit a marked maximum of 5 mW/Km for a carrier concentration of around 10cm at room temperature. Temperature-dependent measurements up to 650 °C show, with increasing doping concentration, a change of the resistivity from a semiconducting to a metallic behavior and an increase of both Seebeck coefficient and power factor, with this last one peaking at 9.8 mW/Km in the 350-550 °C temperature range. For higher concentrations, scanning electron microscopy and energy-dispersive X-ray spectroscopy show a partial segregation of boron on particles on the surface. These results exemplify the great advantage of sputtering codeposition methods to easily tune and optimize the thermoelectric performance in thin films, obtaining in our specific case highly competitive power factors in a simple and reliable manner.
研究了具有可控掺杂浓度的高硼掺杂纳米晶硅薄膜的功率因数。我们通过改变硼磁控管功率从10瓦到60瓦,同时在两个独立溅射源共沉积过程中保持SiB源的功率恒定,实现了电荷载流子浓度从10到10/cm且电导率可控的硼含量高度调谐。随着硼掺杂增加电导率上升,我们观察到塞贝克系数从500微伏/开稳定下降到100微伏/开。这些数值导致功率因数在室温下对于载流子浓度约为10/cm时呈现出明显的最大值5毫瓦/开米。高达650℃的温度相关测量表明,随着掺杂浓度增加,电阻率从半导体行为转变为金属行为,塞贝克系数和功率因数均增加,后者在350 - 550℃温度范围内达到峰值9.8毫瓦/开米。对于更高浓度,扫描电子显微镜和能量色散X射线光谱显示硼在表面颗粒上部分偏析。这些结果例证了溅射共沉积方法在轻松调节和优化薄膜热电性能方面的巨大优势,在我们的具体案例中以简单可靠的方式获得了极具竞争力的功率因数。