Ding Zhenghao, Song Qingqing, Wang Guangdi, Zhong Zhuojun, Zhong Guoyong, Li Hong, Chen Yuexin, Zhou Xiang, Liu Liwei, Yang Song
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
RSC Adv. 2024 May 31;14(25):17571-17582. doi: 10.1039/d4ra02006e. eCollection 2024 May 28.
Kiwifruit bacterial canker, caused by pv. (), is one of the most important diseases in kiwifruit, creating huge economic losses to kiwifruit-growing countries around the world. Metal-based nanomaterials offer a promising alternative strategy to combat plant diseases induced by bacterial infection. However, it is still challenging to design highly active nanomaterials for controlling kiwifruit bacterial canker. Here, a novel multifunctional nanocomposite (ZnO@PDA-Mn) is designed that integrates the antibacterial activity of zinc oxide nanoparticles (ZnO NPs) with the plant reactive oxygen species scavenging ability of catalase (CAT) enzyme-like active sites through introducing manganese modified polydopamine (PDA) coating. The results reveal that ZnO@PDA-Mn nanocomposites can efficiently catalyze the conversion of HO to O and HO to achieve excellent CAT-like activity. experiments demonstrate that ZnO@PDA-Mn nanocomposites maintain the antibacterial activity of ZnO NPs and induce significant damage to bacterial cell membranes. Importantly, ZnO@PDA-Mn nanocomposites display outstanding curative and protective efficiencies of 47.7% and 53.8% at a dose of 200 μg mL against , which are superior to those of zinc thiozole (20.6% and 8.8%) and ZnO (38.7% and 33.8%). The nanocomposites offer improved control efficacy through direct bactericidal effects and decreasing oxidative damage in plants induced by bacterial infection. Our research underscores the potential of nanocomposites containing CAT-like active sites in plant protection, offering a promising strategy for sustainable disease management in agriculture.
猕猴桃细菌性溃疡病由丁香假单胞菌猕猴桃致病变种(Pseudomonas syringae pv. actinidiae)引起,是猕猴桃最重要的病害之一,给全球猕猴桃种植国家造成了巨大经济损失。金属基纳米材料为对抗细菌感染引起的植物病害提供了一种有前景的替代策略。然而,设计用于控制猕猴桃细菌性溃疡病的高活性纳米材料仍然具有挑战性。在此,设计了一种新型多功能纳米复合材料(ZnO@PDA-Mn),通过引入锰修饰的聚多巴胺(PDA)涂层,将氧化锌纳米颗粒(ZnO NPs)的抗菌活性与过氧化氢酶(CAT)类酶活性位点的植物活性氧清除能力相结合。结果表明,ZnO@PDA-Mn纳米复合材料能有效催化HO转化为O以及HO转化,以实现优异的类CAT活性。实验证明,ZnO@PDA-Mn纳米复合材料保持了ZnO NPs的抗菌活性,并对细菌细胞膜造成显著损伤。重要的是,ZnO@PDA-Mn纳米复合材料在200μg mL的剂量下对猕猴桃细菌性溃疡病菌(P. syringae pv. actinidiae)显示出47.7%和53.8%的出色治疗和保护效率,优于噻唑锌(20.6%和8.8%)和ZnO(38.7%和33.8%)。这些纳米复合材料通过直接杀菌作用和减少细菌感染诱导的植物氧化损伤,提高了病害防治效果。我们的研究强调了含有类CAT活性位点的纳米复合材料在植物保护中的潜力,为农业可持续病害管理提供了一种有前景的策略。