Suppr超能文献

使用等变多尺度模型学习量子力学/分子力学势能

Learning QM/MM potential using equivariant multiscale model.

作者信息

Lei Yao-Kun, Yagi Kiyoshi, Sugita Yuji

机构信息

Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.

Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan.

出版信息

J Chem Phys. 2024 Jun 7;160(21). doi: 10.1063/5.0205123.

Abstract

The machine learning (ML) method emerges as an efficient and precise surrogate model for high-level electronic structure theory. Its application has been limited to closed chemical systems without considering external potentials from the surrounding environment. To address this limitation and incorporate the influence of external potentials, polarization effects, and long-range interactions between a chemical system and its environment, the first two terms of the Taylor expansion of an electrostatic operator have been used as extra input to the existing ML model to represent the electrostatic environments. However, high-order electrostatic interaction is often essential to account for external potentials from the environment. The existing models based only on invariant features cannot capture significant distribution patterns of the external potentials. Here, we propose a novel ML model that includes high-order terms of the Taylor expansion of an electrostatic operator and uses an equivariant model, which can generate a high-order tensor covariant with rotations as a base model. Therefore, we can use the multipole-expansion equation to derive a useful representation by accounting for polarization and intermolecular interaction. Moreover, to deal with long-range interactions, we follow the same strategy adopted to derive long-range interactions between a target system and its environment media. Our model achieves higher prediction accuracy and transferability among various environment media with these modifications.

摘要

机器学习(ML)方法作为一种用于高级电子结构理论的高效且精确的替代模型而出现。其应用仅限于封闭化学系统,未考虑来自周围环境的外部势。为解决这一局限性并纳入外部势、极化效应以及化学系统与其环境之间的长程相互作用的影响,静电算符泰勒展开式的前两项已被用作现有ML模型的额外输入,以表示静电环境。然而,高阶静电相互作用对于考虑来自环境的外部势通常至关重要。仅基于不变特征的现有模型无法捕捉外部势的显著分布模式。在此,我们提出一种新颖的ML模型,该模型包含静电算符泰勒展开式的高阶项,并使用等变模型,该等变模型可以生成作为基础模型的与旋转协变的高阶张量。因此,我们可以通过考虑极化和分子间相互作用,利用多极展开方程来推导一种有用的表示。此外,为处理长程相互作用,我们采用与推导目标系统与其环境介质之间长程相互作用相同的策略。通过这些修改,我们的模型在各种环境介质之间实现了更高的预测准确性和可转移性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验