Boulanger Eliot, Thiel Walter
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
J Chem Theory Comput. 2012 Nov 13;8(11):4527-38. doi: 10.1021/ct300722e. Epub 2012 Oct 24.
Accurate quantum mechanical/molecular mechanical (QM/MM) treatments should account for MM polarization and properly include long-range electrostatic interactions. We report on a development that covers both these aspects. Our approach combines the classical Drude oscillator (DO) model for the electronic polarizability of the MM atoms with the generalized solvent boundary Potential (GSBP) and the solvated macromolecule boundary potential (SMBP). These boundary potentials (BP) are designed to capture the long-range effects of the outer region of a large system on its interior. They employ a finite difference approximation to the Poisson-Boltzmann equation for computing electrostatic interactions and take into account outer-region bulk solvent through a polarizable dielectric continuum (PDC). This approach thus leads to fully polarizable three-layer QM/MM-DO/BP methods. As the mutual responses of each of the subsystems have to be taken into account, we propose efficient schemes to converge the polarization of each layer simultaneously. For molecular dynamics (MD) simulations using GSBP, this is achieved by considering the MM polarizable model as a dynamical degree of freedom, and hence contributions from the boundary potential can be evaluated for a frozen state of polarization at every time step. For geometry optimizations using SMBP, we propose a dual self-consistent field approach for relaxing the Drude oscillators to their ideal positions and converging the QM wave function with the proper boundary potential. The chosen coupling schemes are evaluated with a test system consisting of a glycine molecule in a water ball. Both boundary potentials are capable of properly reproducing the gradients at the inner-region atoms and the Drude oscillators. We show that the effect of the Drude oscillators must be included in all terms of the boundary potentials to obtain accurate results and that the use of a high dielectric constant for the PDC does not lead to a polarization catastrophe of the DO models. Optimum values for some key parameters are discussed. We also address the efficiency of these approaches compared to standard QM/MM-DO calculations without BP. In the SMBP case, computation times can be reduced by around 40% for each step of a geometry optimization, with some variation depending on the chosen QM method. In the GSBP case, the computational advantages of using the boundary potential increase with system size and with the number of MD steps.
精确的量子力学/分子力学(QM/MM)处理应考虑分子力学(MM)极化并恰当地包含远程静电相互作用。我们报告了一项涵盖这两个方面的进展。我们的方法将用于MM原子电子极化率的经典德鲁德振子(DO)模型与广义溶剂边界势(GSBP)和溶剂化大分子边界势(SMBP)相结合。这些边界势(BP)旨在捕捉大系统外部区域对其内部的远程影响。它们采用泊松-玻尔兹曼方程的有限差分近似来计算静电相互作用,并通过可极化介电连续体(PDC)考虑外部区域的本体溶剂。因此,这种方法导致了完全可极化的三层QM/MM-DO/BP方法。由于必须考虑每个子系统的相互响应,我们提出了有效的方案来同时收敛每层的极化。对于使用GSBP的分子动力学(MD)模拟,这是通过将MM可极化模型视为一个动力学自由度来实现的,因此可以在每个时间步针对极化的冻结状态评估边界势的贡献。对于使用SMBP的几何优化,我们提出了一种双自洽场方法,用于将德鲁德振子松弛到其理想位置,并使QM波函数与适当的边界势收敛。所选择的耦合方案通过一个由水球中的甘氨酸分子组成的测试系统进行评估。两种边界势都能够恰当地再现内部区域原子和德鲁德振子处的梯度。我们表明,德鲁德振子的效应必须包含在边界势的所有项中才能获得准确结果,并且使用高介电常数的PDC不会导致DO模型的极化灾难。讨论了一些关键参数的最佳值。我们还讨论了与没有BP的标准QM/MM-DO计算相比,这些方法的效率。在SMBP的情况下,几何优化的每一步计算时间可以减少约40%,具体会因所选的QM方法而有所不同。在GSBP的情况下,使用边界势的计算优势随着系统大小和MD步数的增加而增加。