Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
J Chem Theory Comput. 2022 Mar 8;18(3):1701-1710. doi: 10.1021/acs.jctc.1c01021. Epub 2022 Feb 3.
The accurate description of electrostatic interactions remains a challenging problem for classical potential-energy functions. The commonly used fixed partial-charge approximation fails to reproduce the electrostatic potential at short range due to its insensitivity to conformational changes and anisotropic effects. At the same time, possibly more accurate machine-learned (ML) potentials struggle with the long-range behavior due to their inherent locality ansatz. Employing a multipole expansion offers in principle an exact treatment of the electrostatic potential such that the long-range and short-range electrostatic interactions can be treated simultaneously with high accuracy. However, such an expansion requires the calculation of the electron density using computationally expensive quantum-mechanical (QM) methods. Here, we introduce an equivariant graph neural network (GNN) to address this issue. The proposed model predicts atomic multipoles up to the quadrupole, circumventing the need for expensive QM computations. By using an equivariant architecture, the model enforces the correct symmetry by design without relying on local reference frames. The GNN reproduces the electrostatic potential of various systems with high fidelity. Possible uses for such an approach include the separate treatment of long-range interactions in ML potentials, the analysis of electrostatic potential surfaces, and static multipoles in polarizable force fields.
静电相互作用的准确描述仍然是经典势能函数的一个具有挑战性的问题。由于不能感知构象变化和各向异性效应,常用的固定部分电荷近似在短程范围内无法再现静电势。同时,由于其固有的局部假设,可能更准确的机器学习(ML)势在长程行为上存在困难。采用多极展开在原则上提供了静电势的精确处理,从而可以高精度地同时处理长程和短程静电相互作用。然而,这种展开需要使用计算成本高昂的量子力学(QM)方法来计算电子密度。在这里,我们引入了一种等变图神经网络(GNN)来解决这个问题。所提出的模型预测了高达四极的原子多极,从而避免了昂贵的 QM 计算的需要。通过使用等变架构,该模型通过设计强制实施正确的对称性,而无需依赖局部参考系。该 GNN 以高精度再现了各种系统的静电势。这种方法的可能用途包括在 ML 势中单独处理长程相互作用、分析静电势能面以及在极化力场中处理静态多极。