Li Yuan, Cao Lin, Luo Wei, Zhang Hui, Cai Hong, Karim Muhammad Faeyz, Gao Feng, Fitzsimons Joseph, Song Qinghua, Liu Ai-Qun
Institute of Quantum Technology (IQT), The Hong Kong Polytechnic University, Hong Kong, 11 Yuk Choi Rd, Hung Hom, Hong Kong.
Quantum Science and Engineering Centre (QSec), Nanyang Technological University, 639798, Singapore.
Phys Rev Lett. 2024 May 17;132(20):200801. doi: 10.1103/PhysRevLett.132.200801.
A fully homomorphic encryption system enables computation on encrypted data without the necessity for prior decryption. This facilitates the seamless establishment of a secure quantum channel, bridging the server and client components, and thereby providing the client with secure access to the server's substantial computational capacity for executing quantum operations. However, traditional homomorphic encryption systems lack scalability, programmability, and stability. In this Letter, we experimentally demonstrate a proof-of-concept implementation of a homomorphic encryption scheme on a compact quantum chip, verifying the feasibility of using photonic chips for quantum homomorphic encryption. Our work not only provides a solution for circuit expansion, addressing the longstanding challenge of scalability while significantly reducing the size of quantum network infrastructure, but also lays the groundwork for the development of highly sophisticated quantum fully homomorphic encryption systems.
全同态加密系统能够对加密数据进行计算,而无需事先解密。这有助于无缝建立安全的量子通道,连接服务器和客户端组件,从而为客户端提供对服务器强大计算能力的安全访问,以执行量子操作。然而,传统的同态加密系统缺乏可扩展性、可编程性和稳定性。在本信函中,我们通过实验展示了在紧凑型量子芯片上同态加密方案的概念验证实现,验证了使用光子芯片进行量子同态加密的可行性。我们的工作不仅为电路扩展提供了一种解决方案,解决了长期存在的可扩展性挑战,同时显著减小了量子网络基础设施的规模,还为开发高度复杂的量子全同态加密系统奠定了基础。