Suppr超能文献

仅用有限的基线数据预测抑郁症发作:基于个体和多层次模型的指数加权移动平均方法的比较。

Forecasting the onset of depression with limited baseline data only: A comparison of a person-specific and a multilevel modeling based exponentially weighted moving average approach.

机构信息

Research Group of Quantitative Psychology and Individual Differences, Faculty of Psychology and Educational Sciences, KU Leuven.

Department of Biosystems, Mechatronics, Biostatistics and Sensors, KU Leuven.

出版信息

Psychol Assess. 2024 Jun-Jul;36(6-7):379-394. doi: 10.1037/pas0001314.

Abstract

The onset of depressive episodes is preceded by changes in mean levels of affective experiences, which can be detected using the exponentially weighted moving average procedure on experience sampling method (ESM) data. Applying the exponentially weighted moving average procedure requires sufficient baseline data from the person under study in healthy times, which is needed to calculate a control limit for monitoring incoming ESM data. It is, however, not trivial to obtain sufficient baseline data from a single person. We therefore investigate whether historical ESM data from healthy individuals can help establish an adequate control limit for the person under study via multilevel modeling. Specifically, we focus on the case in which there is very little baseline data available of the person under study (i.e., up to 7 days). This multilevel approach is compared with the traditional, person-specific approach, where estimates are obtained using the person's available baseline data. Predictive performance in terms of Matthews correlation coefficient did not differ much between the approaches; however, the multilevel approach was more sensitive at detecting mean changes. This implies that for low-cost and nonharmful interventions, the multilevel approach may prove particularly beneficial. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

抑郁发作的发作前伴随着情感体验的平均水平的变化,这可以使用经验采样方法(ESM)数据的指数加权移动平均程序来检测。应用指数加权移动平均程序需要在健康时期从研究对象中获得足够的基线数据,这是计算监测传入 ESM 数据的控制限所必需的。然而,从一个人那里获得足够的基线数据并非易事。因此,我们通过多层次建模研究了来自健康个体的历史 ESM 数据是否可以帮助为研究对象建立适当的控制限。具体来说,我们专注于研究对象的基线数据非常少的情况(即,最多 7 天)。这种多层次方法与传统的、针对个人的方法进行了比较,在传统方法中,使用研究对象可用的基线数据来获得估计值。根据马修斯相关系数,预测性能在两种方法之间没有太大差异;然而,多层次方法在检测均值变化方面更为敏感。这意味着对于低成本和非有害的干预措施,多层次方法可能特别有益。(PsycInfo 数据库记录(c)2024 APA,保留所有权利)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验