Suppr超能文献

稀土元素在生物学中的应用:从生物化学的好奇心到提取工业的解决方案。

Rare earth elements in biology: From biochemical curiosity to solutions for extractive industries.

机构信息

ARC Centre of Excellence in Synthetic Biology, Canberra, Australian Capital Territory, Australia.

CSIRO Advanced Engineering Biology Future Science Platform, Black Mountain Science and Innovation Park, Canberra, Australian Capital Territory, Australia.

出版信息

Microb Biotechnol. 2024 Jun;17(6):e14503. doi: 10.1111/1751-7915.14503.

Abstract

Rare earth elements (REEs) are critical for our modern lifestyles and the transition to a low-carbon economy. Recent advances in our understanding of the role of REEs in biology, particularly methylotrophy, have provided opportunities to explore biotechnological innovations to improve REE mining and recycling. In addition to bacterial accumulation and concentration of REEs, biological REE binders, including proteins (lanmodulin, lanpepsy) and small molecules (metallophores and cofactors) have been identified that enable REE concentration and separation. REE-binding proteins have also been used in several mechanistically distinct REE biosensors, which have potential application in mining and medicine. Notably, the role of REEs in biology has only been known for a decade, suggesting their considerable scope for developing new understanding and novel applications.

摘要

稀土元素(REEs)对于我们的现代生活方式和向低碳经济的转型至关重要。我们对 REE 在生物学中作用的理解的最新进展,特别是在甲基营养方面,为探索生物技术创新以提高 REE 开采和回收提供了机会。除了细菌对 REE 的积累和浓缩外,还已经确定了生物 REE 结合蛋白,包括蛋白质(lanmodulin、lanpepsy)和小分子(金属载体和辅因子),这些蛋白可以实现 REE 的浓缩和分离。REE 结合蛋白也被用于几种在机制上不同的 REE 生物传感器中,这些传感器在采矿和医学中有潜在的应用。值得注意的是,REE 在生物学中的作用仅在十年前才被发现,这表明它们在开发新的理解和新的应用方面具有相当大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f53/11146143/b9262d74dcec/MBT2-17-e14503-g007.jpg

相似文献

1
Rare earth elements in biology: From biochemical curiosity to solutions for extractive industries.
Microb Biotechnol. 2024 Jun;17(6):e14503. doi: 10.1111/1751-7915.14503.
2
Interactions of microorganisms with rare earth ions and their utilization for separation and environmental technology.
Appl Microbiol Biotechnol. 2013 Jan;97(1):1-8. doi: 10.1007/s00253-012-4519-9. Epub 2012 Nov 1.
3
Microbial recovery of rare earth elements from various waste sources: a mini review with emphasis on microalgae.
World J Microbiol Biotechnol. 2024 May 4;40(6):189. doi: 10.1007/s11274-024-03974-4.
4
Investigation of Rare Earth Element Binding to a Surface-Bound Affinity Peptide Derived from EF-Hand Loop I of Lanmodulin.
ACS Appl Mater Interfaces. 2024 Apr 3;16(13):16912-16926. doi: 10.1021/acsami.3c17565. Epub 2024 Mar 25.
5
Recovery and separation of rare Earth elements using salmon milt.
PLoS One. 2014 Dec 9;9(12):e114858. doi: 10.1371/journal.pone.0114858. eCollection 2014.
7
Role of microorganisms in bioleaching of rare earth elements from primary and secondary resources.
Appl Microbiol Biotechnol. 2019 Feb;103(3):1043-1057. doi: 10.1007/s00253-018-9526-z. Epub 2018 Nov 28.
9
Rare earth metallic elements in plants: assessing benefits, risks and mitigating strategies.
Plant Cell Rep. 2024 Aug 15;43(9):216. doi: 10.1007/s00299-024-03305-9.
10
Bridging Hydrometallurgy and Biochemistry: A Protein-Based Process for Recovery and Separation of Rare Earth Elements.
ACS Cent Sci. 2021 Nov 24;7(11):1798-1808. doi: 10.1021/acscentsci.1c00724. Epub 2021 Oct 8.

引用本文的文献

2
Lanthanide-Controlled Protein Switches: Development and In Vitro and In Vivo Applications.
Angew Chem Int Ed Engl. 2025 Feb 24;64(9):e202411584. doi: 10.1002/anie.202411584. Epub 2025 Feb 5.
3
Emerging role of rare earth elements in biomolecular functions.
ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wrae241.
4
Development of Broad-Range Microbial Minimal Culture Medium for Lanthanide Studies.
Microorganisms. 2024 Jul 26;12(8):1531. doi: 10.3390/microorganisms12081531.

本文引用的文献

1
LanTERN: A Fluorescent Sensor That Specifically Responds to Lanthanides.
ACS Synth Biol. 2024 Mar 15;13(3):958-962. doi: 10.1021/acssynbio.3c00600. Epub 2024 Feb 20.
2
Microbial synthesis of pyrroloquinoline quinone.
World J Microbiol Biotechnol. 2023 Dec 7;40(1):31. doi: 10.1007/s11274-023-03833-8.
3
Engineering biomaterials for the recovery of rare earth elements.
Trends Biotechnol. 2024 May;42(5):575-590. doi: 10.1016/j.tibtech.2023.10.011. Epub 2023 Nov 18.
4
Genetic Modification of for Rare-Earth Element Recovery under Acidic Conditions.
Environ Sci Technol. 2023 Dec 5;57(48):19902-19911. doi: 10.1021/acs.est.3c05772. Epub 2023 Nov 20.
5
Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer.
Nature. 2023 Jun;618(7963):87-93. doi: 10.1038/s41586-023-05945-5. Epub 2023 May 31.
6
Clickable polymer scaffolds enable Ce recovery with peptide ligands.
Soft Matter. 2023 Apr 12;19(15):2823-2831. doi: 10.1039/d2sm01664h.
7
Lanmodulin-Functionalized Magnetic Nanoparticles as a Highly Selective Biosorbent for Recovery of Rare Earth Elements.
Environ Sci Technol. 2023 Mar 14;57(10):4276-4285. doi: 10.1021/acs.est.2c08971. Epub 2023 Feb 15.
9
Recent trends of biotechnological production of polyhydroxyalkanoates from C1 carbon sources.
Front Bioeng Biotechnol. 2023 Jan 6;10:907500. doi: 10.3389/fbioe.2022.907500. eCollection 2022.
10
A genetically encoded fluorescent sensor for manganese(II), engineered from lanmodulin.
Proc Natl Acad Sci U S A. 2022 Dec 20;119(51):e2212723119. doi: 10.1073/pnas.2212723119. Epub 2022 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验