Gilkes Joe, Storr Mark T, Maurer Reinhard J, Habershon Scott
Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K.
EPSRC HetSys Centre for Doctoral Training, University of Warwick, Gibbet Hill Rd, CV4 7AL Coventry, U.K.
J Chem Theory Comput. 2024 Jun 25;20(12):5196-5214. doi: 10.1021/acs.jctc.4c00333. Epub 2024 Jun 3.
Predicting the degradation processes of molecules over long time scales is a key aspect of industrial materials design. However, it is made computationally challenging by the need to construct large networks of chemical reactions that are relevant to the experimental conditions that kinetic models must mirror, with every reaction requiring accurate kinetic data. Here, we showcase , a new software package for constructing large-scale chemical reaction networks in a fully automated fashion by exploring chemical reaction space with a kinetics-driven algorithm; coupled to efficient machine-learning models of activation energies for sampled elementary reactions, we show how this approach readily enables generation and kinetic characterization of networks containing ∼10 chemical species and ≃10-10 reactions. Symbolic-numeric modeling of the generated reaction networks is used to allow for flexible, efficient computation of kinetic profiles under experimentally realizable conditions such as continuously variable temperature regimes, enabling direct connection between bottom-up reaction networks and experimental observations. Highly efficient propagation of long-time-scale kinetic profiles is required for automated reaction network refinement and is enabled here by a new discrete kinetic approximation. The resulting simulation package therefore enables automated generation, characterization, and long-time-scale modeling of complex chemical reaction systems. We demonstrate this for hydrocarbon pyrolysis simulated over time scales of seconds, using transient temperature profiles representing those of tubular flow reactor experiments.
预测分子在长时间尺度上的降解过程是工业材料设计的一个关键方面。然而,由于需要构建与动力学模型必须反映的实验条件相关的大型化学反应网络,且每个反应都需要准确的动力学数据,这使得计算变得具有挑战性。在此,我们展示了一个新的软件包,它通过一种动力学驱动算法探索化学反应空间,以全自动方式构建大规模化学反应网络;结合对采样基元反应活化能的高效机器学习模型,我们展示了这种方法如何能够轻松生成并对包含约10种化学物质和≃10¹⁰个反应的网络进行动力学表征。对生成的反应网络进行符号 - 数值建模,以便在诸如连续可变温度范围等实验可实现条件下灵活、高效地计算动力学曲线,从而实现自下而上的反应网络与实验观测之间的直接联系。自动反应网络优化需要长时间尺度动力学曲线的高效传播,这里通过一种新的离散动力学近似实现了这一点。因此,由此产生的模拟软件包能够对复杂化学反应系统进行自动生成、表征和长时间尺度建模。我们使用代表管式流动反应器实验的瞬态温度曲线,展示了在数秒时间尺度上对烃类热解的模拟情况。