Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium.
Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium.
J Chem Theory Comput. 2024 Jun 25;20(12):4998-5011. doi: 10.1021/acs.jctc.4c00206. Epub 2024 Jun 3.
Phosphorylations are the most common and extensively studied post-translational modification (PTM) of proteins in eukaryotes. They constitute a major regulatory mechanism, modulating protein function, protein-protein interactions, as well as subcellular localization. Phosphorylation sites are preferably located in intrinsically disordered regions and have been shown to trigger structural rearrangements and order-to-disorder transitions. They can therefore have a significant effect on protein backbone dynamics or conformation, but only sparse experimental data are available. To obtain a more general description of how and when phosphorylations have a significant effect on protein behavior, molecular dynamics (MD) currently provides the only suitable framework to study these effects at a large scale in atomistic detail. This study develops a systematic MD simulation framework to explore the influence of phosphorylations on the local backbone dynamics and conformational propensities of proteins. Through a series of glycine-backbone peptides, we studied the effects of amino acid residues including the three most common phosphorylations (Ser, Thr, and Tyr), on local backbone dynamics and conformational propensities. We further extended our study to investigate the interactions of all such residues between position to positions + 1, + 2, + 3, and + 4 in such peptides. The final data set comprises structural ensembles for 3393 sequences with more than 1 μs of sampling for each ensemble. To validate the relevance of the results, the structural and conformational properties extracted from the MD simulations are compared to NMR data from the Biological Magnetic Resonance Data Bank. The systematic nature of this study enables the projection of the gained knowledge onto any phosphorylation site in the proteome and provides a general framework for the study of further PTMs. The full data set is publicly available, as a training and reference set.
磷酸化是真核生物中最常见和广泛研究的蛋白质翻译后修饰(PTM)。它们构成了主要的调节机制,调节蛋白质功能、蛋白质-蛋白质相互作用以及亚细胞定位。磷酸化位点通常位于固有无序区域,并已被证明可引发结构重排和有序到无序的转变。因此,它们可以对蛋白质骨架动力学或构象产生重大影响,但只有稀疏的实验数据可用。为了更全面地描述磷酸化如何以及何时对蛋白质行为产生重大影响,分子动力学(MD)目前提供了唯一合适的框架,可在原子细节的大规模上研究这些影响。本研究开发了一种系统的 MD 模拟框架,以探索磷酸化对蛋白质局部骨架动力学和构象倾向的影响。通过一系列甘氨酸骨架肽,我们研究了包括三种最常见磷酸化(Ser、Thr 和 Tyr)在内的氨基酸残基对局部骨架动力学和构象倾向的影响。我们进一步扩展了研究范围,以研究这些残基在肽中位置 到位置 +1、+2、+3 和 +4 之间的相互作用。最终数据集包含 3393 个序列的结构集合,每个集合的采样时间超过 1 μs。为了验证结果的相关性,从 MD 模拟中提取的结构和构象特性与来自生物磁共振数据银行的 NMR 数据进行了比较。本研究的系统性使我们能够将所获得的知识投射到蛋白质组中的任何磷酸化位点,并为进一步 PTM 研究提供了一般框架。完整数据集是公开的,可用作训练和参考集。