Suppr超能文献

CSAMDT:用于从胸部X光生成放射学报告的条件自注意力记忆驱动变压器

CSAMDT: Conditional Self Attention Memory-Driven Transformers for Radiology Report Generation from Chest X-Ray.

作者信息

Shahzadi Iqra, Madni Tahir Mustafa, Janjua Uzair Iqbal, Batool Ghanwa, Naz Bushra, Ali Muhammad Qasim

机构信息

Department of Computer Science, COMSATS University Islamabad, Islamabad, Pakistan.

Rehabilitation Department, Yusra Medical and Dental College, Rawalpindi, Pakistan.

出版信息

J Imaging Inform Med. 2024 Dec;37(6):2825-2837. doi: 10.1007/s10278-024-01126-6. Epub 2024 Jun 3.

Abstract

A radiology report plays a crucial role in guiding patient treatment, but writing these reports is a time-consuming task that demands a radiologist's expertise. In response to this challenge, researchers in the subfields of artificial intelligence for healthcare have explored techniques for automatically interpreting radiographic images and generating free-text reports, while much of the research on medical report creation has focused on image captioning methods without adequately addressing particular report aspects. This study introduces a Conditional Self Attention Memory-Driven Transformer model for generating radiological reports. The model operates in two phases: initially, a multi-label classification model, utilizing ResNet152 v2 as an encoder, is employed for feature extraction and multiple disease diagnosis. In the second phase, the Conditional Self Attention Memory-Driven Transformer serves as a decoder, utilizing self-attention memory-driven transformers to generate text reports. Comprehensive experimentation was conducted to compare existing and proposed techniques based on Bilingual Evaluation Understudy (BLEU) scores ranging from 1 to 4. The model outperforms the other state-of-the-art techniques by increasing the BLEU 1 (0.475), BLEU 2 (0.358), BLEU 3 (0.229), and BLEU 4 (0.165) respectively. This study's findings can alleviate radiologists' workloads and enhance clinical workflows by introducing an autonomous radiological report generation system.

摘要

放射学报告在指导患者治疗方面起着至关重要的作用,但撰写这些报告是一项耗时的任务,需要放射科医生的专业知识。为应对这一挑战,医疗保健人工智能子领域的研究人员探索了自动解读放射图像和生成自由文本报告的技术,而许多关于医学报告创建的研究都集中在图像字幕方法上,没有充分解决特定的报告方面。本研究引入了一种用于生成放射学报告的条件自注意力记忆驱动变压器模型。该模型分两个阶段运行:首先,使用ResNet152 v2作为编码器的多标签分类模型用于特征提取和多种疾病诊断。在第二阶段,条件自注意力记忆驱动变压器用作解码器,利用自注意力记忆驱动变压器生成文本报告。基于1到4的双语评估替代指标(BLEU)分数进行了全面实验,以比较现有技术和所提出的技术。该模型分别将BLEU 1(0.475)、BLEU 2(0.358)、BLEU 3(0.229)和BLEU 4(0.165)提高,优于其他现有技术。本研究的结果可以通过引入一个自主的放射学报告生成系统来减轻放射科医生的工作量并增强临床工作流程。

相似文献

10
GPT-Driven Radiology Report Generation with Fine-Tuned Llama 3.基于微调的Llama 3由GPT驱动的放射学报告生成
Bioengineering (Basel). 2024 Oct 18;11(10):1043. doi: 10.3390/bioengineering11101043.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验