Suppr超能文献

利用基于文本的转换器从放射学自由文本报告数据库中提取的信息开发基于图像的决策支持系统。

Development of image-based decision support systems utilizing information extracted from radiological free-text report databases with text-based transformers.

机构信息

Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany.

Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS, Sankt Augustin, Germany.

出版信息

Eur Radiol. 2024 May;34(5):2895-2904. doi: 10.1007/s00330-023-10373-0. Epub 2023 Nov 7.

Abstract

OBJECTIVES

To investigate the potential and limitations of utilizing transformer-based report annotation for on-site development of image-based diagnostic decision support systems (DDSS).

METHODS

The study included 88,353 chest X-rays from 19,581 intensive care unit (ICU) patients. To label the presence of six typical findings in 17,041 images, the corresponding free-text reports of the attending radiologists were assessed by medical research assistants ("gold labels"). Automatically generated "silver" labels were extracted for all reports by transformer models trained on gold labels. To investigate the benefit of such silver labels, the image-based models were trained using three approaches: with gold labels only (M), with silver labels first, then with gold labels (M), and with silver and gold labels together (M). To investigate the influence of invested annotation effort, the experiments were repeated with different numbers (N) of gold-annotated reports for training the transformer and image-based models and tested on 2099 gold-annotated images. Significant differences in macro-averaged area under the receiver operating characteristic curve (AUC) were assessed by non-overlapping 95% confidence intervals.

RESULTS

Utilizing transformer-based silver labels showed significantly higher macro-averaged AUC than training solely with gold labels (N = 1000: M 67.8 [66.0-69.6], M 77.9 [76.2-79.6]; N = 14,580: M 74.5 [72.8-76.2], M 80.9 [79.4-82.4]). Training with silver and gold labels together was beneficial using only 500 gold labels (M 76.4 [74.7-78.0], M 75.3 [73.5-77.0]).

CONCLUSIONS

Transformer-based annotation has potential for unlocking free-text report databases for the development of image-based DDSS. However, on-site development of image-based DDSS could benefit from more sophisticated annotation pipelines including further information than a single radiological report.

CLINICAL RELEVANCE STATEMENT

Leveraging clinical databases for on-site development of artificial intelligence (AI)-based diagnostic decision support systems by text-based transformers could promote the application of AI in clinical practice by circumventing highly regulated data exchanges with third parties.

KEY POINTS

• The amount of data from a database that can be used to develop AI-assisted diagnostic decision systems is often limited by the need for time-consuming identification of pathologies by radiologists. • The transformer-based structuring of free-text radiological reports shows potential to unlock corresponding image databases for on-site development of image-based diagnostic decision support systems. • However, the quality of image annotations generated solely on the content of a single radiology report may be limited by potential inaccuracies and incompleteness of this report.

摘要

目的

研究利用基于变压器的报告标注为基于图像的诊断决策支持系统(DDSS)进行现场开发的潜力和局限性。

方法

该研究纳入了 19581 例重症监护病房(ICU)患者的 88353 张胸部 X 光片。为了在 17041 张图像中标记 6 种典型表现的存在,由医学研究助理(“金标签”)评估相应的主治放射科医生的自由文本报告。通过在金标签上训练的变压器模型自动提取“银”标签。为了研究这种银标签的益处,使用三种方法训练基于图像的模型:仅使用金标签(M)、首先使用银标签,然后使用金标签(M)以及同时使用银标签和金标签(M)。为了研究投入的标注工作的影响,使用不同数量(N)的金标注报告重复实验来训练变压器和基于图像的模型,并在 2099 个金标注图像上进行测试。使用非重叠的 95%置信区间评估宏观平均接收器操作特征曲线(AUC)下的显著差异。

结果

与仅使用金标签训练相比,利用基于变压器的银标签显示出显著更高的宏观平均 AUC(N=1000:M 67.8[66.0-69.6],M 77.9[76.2-79.6];N=14580:M 74.5[72.8-76.2],M 80.9[79.4-82.4])。仅使用 500 个金标签即可从使用金和银标签的联合训练中受益(M 76.4[74.7-78.0],M 75.3[73.5-77.0])。

结论

基于变压器的标注有可能为基于图像的 DDSS 的开发解锁自由文本报告数据库。然而,基于图像的 DDSS 的现场开发可能受益于更复杂的标注管道,包括比单个放射报告更多的信息。

临床相关性声明

通过基于文本的变压器利用临床数据库为基于人工智能(AI)的诊断决策支持系统进行现场开发,可以通过避免与第三方进行高度监管的数据交换来促进 AI 在临床实践中的应用。

要点

• 用于开发 AI 辅助诊断决策系统的数据库中的数据量通常受到放射科医生识别病理学所需的耗时的限制。• 基于变压器的自由文本放射学报告的结构化显示出有可能为基于图像的诊断决策支持系统的现场开发解锁相应的图像数据库。• 然而,仅基于单个放射科报告的内容生成的图像标注的质量可能受到该报告潜在不准确和不完整的限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9460/11126497/412827ac5af7/330_2023_10373_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验