Fang Ethan X, Ning Yang, Liu Han
Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08544, USA.
J R Stat Soc Series B Stat Methodol. 2017 Nov;79(5):1415-1437. doi: 10.1111/rssb.12224. Epub 2016 Dec 26.
This paper proposes a decorrelation-based approach to test hypotheses and construct confidence intervals for the low dimensional component of high dimensional proportional hazards models. Motivated by the geometric projection principle, we propose new decorrelated score, Wald and partial likelihood ratio statistics. Without assuming model selection consistency, we prove the asymptotic normality of these test statistics, establish their semiparametric optimality. We also develop new procedures for constructing pointwise confidence intervals for the baseline hazard function and baseline survival function. Thorough numerical results are provided to back up our theory.
本文提出了一种基于去相关的方法,用于检验高维比例风险模型低维分量的假设并构建置信区间。受几何投影原理的启发,我们提出了新的去相关得分、 Wald 和部分似然比统计量。在不假设模型选择一致性的情况下,我们证明了这些检验统计量的渐近正态性,确立了它们的半参数最优性。我们还开发了用于构建基线风险函数和基线生存函数逐点置信区间的新程序。提供了详尽的数值结果来支持我们的理论。