Suppr超能文献

使用脑电图分析研究大语言模型交互对问题解决和决策的认知影响。

The cognitive impacts of large language model interactions on problem solving and decision making using EEG analysis.

作者信息

Jiang Ting, Wu Jihua, Leung Stephen C H

机构信息

Pediatric Neurological Department, Anhui Children's Hospital, Hefei, Anhui, China.

Department of Engineering, The University of Hong Kong, Hong Kong, China.

出版信息

Front Comput Neurosci. 2025 Jul 16;19:1556483. doi: 10.3389/fncom.2025.1556483. eCollection 2025.

Abstract

INTRODUCTION

The increasing integration of large language models (LLMs) into human-AI collaboration necessitates a deeper understanding of their cognitive impacts on users. Traditional evaluation methods have primarily focused on task performance, overlooking the underlying neural dynamics during interaction.

METHODS

In this study, we introduce a novel framework that leverages electroencephalography (EEG) signals to assess how LLM interactions affect cognitive processes such as attention, cognitive load, and decision-making. Our framework integrates an Interaction-Aware Language Transformer (IALT), which enhances token-level modeling through dynamic attention mechanisms, and an Interaction-Optimized Reasoning Strategy (IORS), which employs reinforcement learning to refine reasoning paths in a cognitively aligned manner.

RESULTS

By coupling these innovations with real-time neural data, the framework provides a fine-grained, interpretable assessment of LLM-induced cognitive changes. Extensive experiments on four benchmark EEG datasets Database for Emotion Analysis using Physiological Signals (DEAP), A Dataset for Affect, Personality and Mood Research on Individuals and Groups (AMIGOS), SJTU Emotion EEG Dataset (SEED), and Database for Emotion Recognition through EEG and ECG Signals (DREAMER) demonstrate that our method outperforms existing models in both emotion classification accuracy and alignment with cognitive signals. The architecture maintains high performance across varied EEG configurations, including low-density, noise-prone portable systems, highlighting its robustness and practical applicability.

DISCUSSION

These findings offer actionable insights for designing more adaptive and cognitively aware LLM systems, and open new avenues for research at the intersection of artificial intelligence and neuroscience.

摘要

引言

大语言模型(LLMs)越来越多地融入人机协作,这就需要更深入地了解它们对用户的认知影响。传统评估方法主要关注任务性能,而忽略了交互过程中潜在的神经动力学。

方法

在本研究中,我们引入了一个新颖的框架,该框架利用脑电图(EEG)信号来评估大语言模型交互如何影响注意力、认知负荷和决策等认知过程。我们的框架集成了一个交互感知语言变换器(IALT),它通过动态注意力机制增强令牌级建模,以及一个交互优化推理策略(IORS),它采用强化学习以认知对齐的方式优化推理路径。

结果

通过将这些创新与实时神经数据相结合,该框架对大语言模型引起的认知变化提供了细粒度、可解释的评估。在四个基准EEG数据集(用于使用生理信号进行情感分析的数据库(DEAP)、用于个体和群体情感、个性和情绪研究的数据集(AMIGOS)、上海交通大学情感EEG数据集(SEED)以及通过EEG和ECG信号进行情感识别的数据库(DREAMER))上进行的大量实验表明,我们的方法在情感分类准确性和与认知信号的对齐方面均优于现有模型。该架构在各种EEG配置中都保持高性能,包括低密度、易受噪声干扰的便携式系统,突出了其鲁棒性和实际适用性。

讨论

这些发现为设计更具适应性和认知意识的大语言模型系统提供了可操作的见解,并为人工智能与神经科学交叉领域的研究开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a8b/12307350/6f50f7edf7c9/fncom-19-1556483-g0009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验