Suppr超能文献

基于组织病理学图像的 ResNet-50 用于口腔神经网络肿瘤鉴别诊断的可行性研究。

Feasibility study of ResNet-50 in the distinction of intraoral neural tumors using histopathological images.

机构信息

Institute of Science and Technology, Federal University of São Paulo (ICT-UNIFESP), São Paulo, Brazil.

Head and Neck Surgery Department, University of São Paulo Medical School, São Paulo, Brazil.

出版信息

J Oral Pathol Med. 2024 Aug;53(7):444-450. doi: 10.1111/jop.13560. Epub 2024 Jun 4.

Abstract

BACKGROUND

Neural tumors are difficult to distinguish based solely on cellularity and often require immunohistochemical staining to aid in identifying the cell lineage. This article investigates the potential of a Convolutional Neural Network for the histopathological classification of the three most prevalent benign neural tumor types: neurofibroma, perineurioma, and schwannoma.

METHODS

A model was developed, trained, and evaluated for classification using the ResNet-50 architecture, with a database of 30 whole-slide images stained in hematoxylin and eosin (106, 782 patches were generated from and divided among the training, validation, and testing subsets, with strategies to avoid data leakage).

RESULTS

The model achieved an accuracy of 70% (64% normalized), and showed satisfactory results for differentiating two of the three classes, reaching approximately 97% and 77% as true positives for neurofibroma and schwannoma classes, respectively, and only 7% for perineurioma class. The AUROC curves for neurofibroma and schwannoma classes was 0.83%, and 0.74% for perineurioma. However, the specificity rate for the perineurioma class was greater (83%) than in the other two classes (neurofibroma with 61%, and schwannoma with 60%).

CONCLUSION

This investigation demonstrated significant potential for proficient performance with a limitation regarding the perineurioma class (the limited feature variability observed contributed to a lower performance).

摘要

背景

仅凭细胞密度难以区分神经肿瘤,通常需要免疫组织化学染色来辅助确定细胞谱系。本文研究了卷积神经网络在三种最常见的良性神经肿瘤类型(神经纤维瘤、神经周围细胞瘤和雪旺细胞瘤)的组织病理学分类中的应用潜力。

方法

我们使用 ResNet-50 架构开发、训练和评估了一个模型,该模型使用了苏木精和伊红染色的全幻灯片图像数据库(从 30 张全幻灯片图像中生成并分为训练、验证和测试子集的 106,782 个斑块,采用了避免数据泄漏的策略)。

结果

该模型的准确率为 70%(归一化准确率为 64%),在区分三种肿瘤中的两种方面表现出令人满意的结果,对神经纤维瘤和雪旺细胞瘤的真阳性率分别达到了约 97%和 77%,而对神经周围细胞瘤的真阳性率仅为 7%。神经纤维瘤和雪旺细胞瘤的 AUROC 曲线分别为 0.83%和 0.74%,而神经周围细胞瘤的 AUROC 曲线为 0.74%。然而,神经周围细胞瘤的特异性率(83%)高于其他两种肿瘤(神经纤维瘤为 61%,雪旺细胞瘤为 60%)。

结论

本研究表明,该方法在神经周围细胞瘤(观察到的特征变异性有限导致性能较低)方面具有显著的应用潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验