Cossio Manuel, Wiedemann Nina, Sanfeliu Torres Esther, Barnadas Sole Esther, Igual Laura
Department of Mathematics and Computer Science, Universitat de Barcelona, Barcelona, Spain.
Institute of Cartography and Geoinformation, ETH, Zürich, Zürich, Switzerland.
Front Oncol. 2025 Jun 11;15:1598289. doi: 10.3389/fonc.2025.1598289. eCollection 2025.
Metastatic detection in sentinel lymph nodes remains a crucial prognostic factor in breast cancer management, with accurate and timely diagnosis directly impacting treatment decisions. While traditional histopathological assessment relies on microscopic examination of stained tissues, the digitization of slides as whole-slide images (WSI) has enabled the development of computer-aided diagnostic systems. These automated approaches offer potential improvements in detection consistency and efficiency compared to conventional methods.
This study leverages transfer learning on hematoxylin and eosin (HE) WSIs to achieve computationally efficient metastasis detection without compromising accuracy. We propose an approach for generating segmentation masks by transferring spatial annotations from immunohistochemistry (IHC) WSIs to corresponding H&E slides. Using these masks, four distinct datasets were constructed to fine-tune a pretrained ResNet50 model across eight different configurations, incorporating varied dataset combinations and data augmentation techniques. To enhance interpretability, we developed a visualization tool that employs color-coded probability maps to highlight tumor regions alongside their prediction confidence. Our experiments demonstrated that integrating an external dataset (Camelyon16) during training significantly improved model performance, surpassing the benefits of data augmentation alone. The optimal model, trained on both external and local data, achieved an accuracy and F1-score of 0.98, outperforming existing state-of-the-art methods.
This study demonstrates that transfer learning architectures, when enhanced with multi-source data integration and interpretability frameworks, can significantly improve metastatic detection in whole slide imaging. Our methodology achieves diagnostic performance comparable to gold-standard techniques while dramatically accelerating analytical workflows. The synergistic combination of external dataset incorporation and probabilistic visualization outputs provides a clinically actionable solution that maintains both computational efficiency and pathological interpretability.
前哨淋巴结中的转移检测仍然是乳腺癌管理中的一个关键预后因素,准确及时的诊断直接影响治疗决策。虽然传统的组织病理学评估依赖于对染色组织的显微镜检查,但将玻片数字化为全玻片图像(WSI)使得计算机辅助诊断系统得以发展。与传统方法相比,这些自动化方法在检测一致性和效率方面具有潜在的改进。
本研究利用苏木精和伊红(HE)WSI上的迁移学习,在不影响准确性的情况下实现计算高效的转移检测。我们提出了一种通过将免疫组织化学(IHC)WSI的空间注释转移到相应的H&E玻片上来生成分割掩码的方法。使用这些掩码,构建了四个不同的数据集,以在八种不同配置下微调预训练的ResNet50模型,纳入不同的数据集组合和数据增强技术。为了提高可解释性,我们开发了一种可视化工具,该工具采用颜色编码的概率图来突出肿瘤区域及其预测置信度。我们的实验表明,在训练期间整合外部数据集(Camelyon16)显著提高了模型性能,超过了单独进行数据增强的效果。在外部和本地数据上训练的最佳模型实现了0.98的准确率和F1分数,优于现有的最先进方法。
本研究表明,当通过多源数据集成和可解释性框架进行增强时,迁移学习架构可以显著改善全玻片成像中的转移检测。我们的方法实现了与金标准技术相当的诊断性能,同时显著加速了分析工作流程。外部数据集纳入和概率可视化输出的协同组合提供了一种临床可行的解决方案,既保持了计算效率又保持了病理可解释性。