Oh Hyeon-Ji, Lee Won-Joon, Sung Jung-Joon, Hong Yoon-Ho
Seoul National University College of Medicine, Seoul, Republic of Korea.
Department of Neurology, Neuroscience Research Institute, Medical Research Council, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
Digit Health. 2024 Jun 3;10:20552076241260120. doi: 10.1177/20552076241260120. eCollection 2024 Jan-Dec.
The phenotypic heterogeneity and complex disease trajectory complicate the ability to predict specific clinical milestone for individual patients with amyotrophic lateral sclerosis (ALS). Here we developed individualized prediction models to estimate the time to the loss of autonomy in swallowing function.
Utilizing the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) database, we built three models of distinct time-to-event prediction algorithms: accelerated failure time (AFT), cox proportional hazard (COX) and random survival forest (RSF) for an individualized risk assessment of the swallowing milestone. The target variable was defined as the time to a decline in the ALSFRS-R swallowing item score to 1 or below, indicating a need for supplementary tube feeding.
Internal cross-validation revealed the median concordance index (C-index) of 0.851 (IQR, 0.842-0.859) for AFT, 0.850 (0.841-0.859) for COX and 0.846 (0.839-0.854) for RSF, and all models demonstrated good distributional calibration with predicted and observed event probabilities closely matched across different time intervals. For external validation with a registry dataset with characteristics different from PRO-ACT, the discriminative power was replicated with comparable C-indices for all models, whereas the calibration revealed a left-skewed distribution suggesting a bias towards overestimation of event probabilities in real-world data. While all models were effective at stratifying patients, the results of RSF model, unlike AFT and COX, did not match well with the KM curves of the corresponding risk groups, supporting the importance of nuanced understanding of data structure and algorithmic properties.
Our models are implemented into a web application which could be applied to individualized counselling, management and clinical trial design for gastrostomy intervention. Further studies for model optimization will advance personalized care in patients with ALS.
表型异质性和复杂的疾病轨迹使得预测肌萎缩侧索硬化症(ALS)个体患者的特定临床里程碑变得复杂。在此,我们开发了个体化预测模型,以估计吞咽功能丧失自主能力的时间。
利用汇总资源开放获取ALS临床试验(PRO-ACT)数据库,我们构建了三种不同的事件发生时间预测算法模型:加速失效时间(AFT)、Cox比例风险(COX)和随机生存森林(RSF),用于吞咽里程碑的个体化风险评估。目标变量定义为ALSFRS-R吞咽项目评分降至1或更低的时间,这表明需要补充管饲。
内部交叉验证显示,AFT模型的中位数一致性指数(C指数)为0.851(IQR,0.842-0.859),COX模型为0.850(0.841-0.859),RSF模型为0.846(0.839-0.854),所有模型均显示出良好的分布校准,预测和观察到的事件概率在不同时间间隔内密切匹配。对于具有与PRO-ACT不同特征的注册数据集进行外部验证时,所有模型的判别能力通过可比的C指数得以重现,而校准显示出左偏分布,表明在实际数据中存在事件概率高估的偏差。虽然所有模型在对患者进行分层方面都有效,但RSF模型的结果与AFT和COX不同,与相应风险组的KM曲线匹配不佳,这支持了对数据结构和算法特性进行细致理解的重要性。
我们的模型已应用于一个网络应用程序中,可用于胃造口术干预的个体化咨询、管理和临床试验设计。进一步的模型优化研究将推动ALS患者的个性化护理。