Bahreini Zaker, Abedi Mohammad, Ashori Alireza, Parach Ali
Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
Heliyon. 2024 May 23;10(11):e31795. doi: 10.1016/j.heliyon.2024.e31795. eCollection 2024 Jun 15.
Exploring the chemical processes and factors influencing the stability of the blue color derived from anthocyanins is a crucial objective in agricultural and food chemistry research. The ability of these compounds to bind with metals could potentially stabilize anthocyanins extracted from plant-based foods or enable modifying their hues for application as natural food colorants. This study had two core objectives - first, to extract and identify the major anthocyanin pigments responsible for iris flower coloration. Second, to selectively complex purified iris anthocyanins with aluminum (Al) and copper (Cu) ions, probing the coordination chemistry underlying synthetic metalloanthocyanin formation. Fresh iris flowers were collected and anthocyanins extracted using an optimized acidic solution. After separation, anthocyanins were complexed with metals Al and Cu at pH 5-6 to understand better the evolution of blue and green colors in anthocyanin-metal chelates. Characterization of anthocyanins and their metal complexes utilized UV-visible spectrometry, colorimetry (L* a*b* values), FTIR spectroscopy, and LC-MS. Metal complexation of anthocyanins exhibited bathochromic shifts of visible absorption maxima from 538 to 584 nm for Al-complex and 538-700 nm for Cu-complex. Color changes were accompanied by decreased lightness (L*, from 87 to 81) and color coefficients a* (+5.4 to -6.8) and b* (-12.2 to -4.8). LC-MS analysis identified five major anthocyanin aglycones: cyanidin (Cyd, / 289), delphinidin (Dpd, / 305), petunidin (Ptd, / 229), malvidin (Mv, / 329) and pelargonidin (/ 273), along with various glycosylated derivatives. This work successfully isolated key iris anthocyanin pigments and elucidated their metal chelation interactions underlying expanded floral color production, bridging knowledge gaps about this underexplored genus.
探索影响花青素衍生蓝色稳定性的化学过程和因素是农业和食品化学研究的一个关键目标。这些化合物与金属结合的能力可能会稳定从植物性食物中提取的花青素,或者使其能够改变色调以用作天然食品色素。本研究有两个核心目标——第一,提取并鉴定导致鸢尾花着色的主要花青素色素。第二,将纯化的鸢尾花青素与铝(Al)和铜(Cu)离子选择性络合,探究合成金属花青素形成背后的配位化学。采集新鲜鸢尾花,并用优化的酸性溶液提取花青素。分离后,花青素在pH 5 - 6下与金属Al和Cu络合,以更好地了解花青素 - 金属螯合物中蓝色和绿色的演变。花青素及其金属络合物的表征采用紫外 - 可见光谱法、比色法(L*a*b*值)、傅里叶变换红外光谱法和液相色谱 - 质谱法。花青素的金属络合表现出可见吸收最大值的红移,铝络合物从538纳米移至584纳米,铜络合物从538纳米移至700纳米。颜色变化伴随着明度降低(L*,从87降至81)以及颜色系数a*(从 +5.4降至 -6.8)和b*(从 -12.2降至 -4.8)。液相色谱 - 质谱分析鉴定出五种主要的花青素苷元:矢车菊素(Cyd,/ 289)、飞燕草素(Dpd,/ 305)、矮牵牛素(Ptd,/ 229)、锦葵色素(Mv,/ 329)和天竺葵素(/ 273),以及各种糖基化衍生物。这项工作成功分离出关键的鸢尾花青素色素,并阐明了它们在扩展花色产生过程中的金属螯合相互作用,填补了关于这个研究不足的属的知识空白。