Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA 92093, USA.
Department of Chemistry and Biochemistry, Biomolecular and Proteomics Mass Spectrometry Facility, University of California San Diego, San Diego, CA 92093, USA.
Sci Signal. 2024 Jun 4;17(839):eade8041. doi: 10.1126/scisignal.ade8041.
A long-standing question in the field of signal transduction is how distinct signaling pathways interact with each other to control cell behavior. Growth factor receptors and G protein-coupled receptors (GPCRs) are the two major signaling hubs in eukaryotes. Given that the mechanisms by which they signal independently have been extensively characterized, we investigated how they may cross-talk with each other. Using linear ion trap mass spectrometry and cell-based biophysical, biochemical, and phenotypic assays, we found at least three distinct ways in which epidermal growth factor affected canonical G protein signaling by the G-coupled GPCR CXCR4 through the phosphorylation of Gα. Phosphomimicking mutations in two residues in the α helix of Gα (tyrosine-154/tyrosine-155) suppressed agonist-induced Gα activation while promoting constitutive Gβγ signaling. Phosphomimicking mutations in the P loop (serine-44, serine-47, and threonine-48) suppressed G activation entirely, thus completely segregating growth factor and GPCR pathways. As expected, most of the phosphorylation events appeared to affect intrinsic properties of Gα proteins, including conformational stability, nucleotide binding, and the ability to associate with and to release Gβγ. However, one phosphomimicking mutation, targeting the carboxyl-terminal residue tyrosine-320, promoted mislocalization of Gα from the plasma membrane, a previously uncharacterized mechanism of suppressing GPCR signaling through G protein subcellular compartmentalization. Together, these findings elucidate not only how growth factor and chemokine signals cross-talk through the phosphorylation-dependent modulation of Gα but also how such cross-talk may generate signal diversity.
长期以来,信号转导领域一直存在一个问题,即不同的信号通路如何相互作用以控制细胞行为。生长因子受体和 G 蛋白偶联受体(GPCRs)是真核生物中的两个主要信号枢纽。鉴于它们独立信号传递的机制已经得到广泛描述,我们研究了它们如何相互交流。使用线性离子阱质谱和基于细胞的生物物理、生化和表型测定,我们发现表皮生长因子通过 G 蛋白偶联 GPCR CXCR4 对 G 蛋白信号的影响至少有三种不同的方式,通过 Gα 的磷酸化。Gα 螺旋中两个残基(酪氨酸-154/酪氨酸-155)的磷酸模拟突变抑制激动剂诱导的 Gα 激活,同时促进组成型 Gβγ 信号。P 环(丝氨酸-44、丝氨酸-47 和苏氨酸-48)中的磷酸模拟突变完全抑制了 G 激活,从而完全分离了生长因子和 GPCR 途径。正如预期的那样,大多数磷酸化事件似乎影响了 Gα 蛋白的固有特性,包括构象稳定性、核苷酸结合以及与 Gβγ 结合和释放的能力。然而,一个磷酸模拟突变,针对羧基末端残基酪氨酸-320,促进了 Gα 从质膜上的错误定位,这是一种通过 G 蛋白亚细胞区室化抑制 GPCR 信号的先前未被描述的机制。总之,这些发现不仅阐明了生长因子和趋化因子信号如何通过 Gα 的磷酸化依赖性调节相互交流,还阐明了这种交流如何产生信号多样性。