Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
J Biol Chem. 2010 Sep 17;285(38):29632-41. doi: 10.1074/jbc.M110.115618. Epub 2010 Jul 9.
Cells express distinct G protein-coupled receptor (GPCR) subtypes on their surface, allowing them to react to a corresponding variety of extracellular stimuli. Cross-regulation between different ligand-GPCR pairs is essential to generate appropriate physiological responses. GPCRs can physically affect each other's functioning by forming heteromeric complexes, whereas cross-regulation between activated GPCRs also occurs through integration of shared intracellular signaling networks. Human herpesviruses utilize virally encoded GPCRs to hijack cellular signaling networks for their own benefit. Previously, we demonstrated that the Epstein-Barr virus-encoded GPCR BILF1 forms heterodimeric complexes with human chemokine receptors. Using a combination of bimolecular complementation and bioluminescence resonance energy transfer approaches, we now show the formation of hetero-oligomeric complexes between this viral GPCR and human CXCR4. BILF1 impaired CXCL12 binding to CXCR4 and, consequently, also CXCL12-induced signaling. In contrast, the G protein uncoupled mutant BILF1-K(3.50)A affected CXCL12-induced CXCR4 signaling to a much lesser extent, indicating that BILF1-mediated CXCR4 inhibition is a consequence of its constitutive activity. Co-expression of Gα(i1) with BILF1 and CXCR4 restored CXCL12-induced signaling. Likewise, BILF1 formed heteromers with the human histamine H(4) receptor (H(4)R). BILF1 inhibited histamine-induced Gα(i)-mediated signaling by H(4)R, however, without affecting histamine binding to this receptor. These data indicate that functional cross-regulation of Gα(i)-coupled GPCRs by BILF1 is at the level of G proteins, even though these GPCRs are assembled in hetero-oligomeric complexes.
细胞在其表面表达不同的 G 蛋白偶联受体 (GPCR) 亚型,使其能够对相应的多种细胞外刺激作出反应。不同配体-GPCR 对之间的交叉调节对于产生适当的生理反应至关重要。GPCR 可以通过形成异源三聚体复合物来物理地影响彼此的功能,而激活的 GPCR 之间的交叉调节也通过共享细胞内信号网络的整合来发生。人类疱疹病毒利用病毒编码的 GPCR 来劫持细胞信号网络为己所用。此前,我们证明了 Epstein-Barr 病毒编码的 GPCR BILF1 与人类趋化因子受体形成异源二聚体复合物。使用双分子互补和生物发光共振能量转移方法的组合,我们现在表明这种病毒 GPCR 与人类 CXCR4 之间形成了异源寡聚复合物。BILF1 损害了 CXCL12 与 CXCR4 的结合,因此也损害了 CXCL12 诱导的信号转导。相比之下,G 蛋白解偶联突变体 BILF1-K(3.50)A 对 CXCL12 诱导的 CXCR4 信号转导的影响要小得多,这表明 BILF1 介导的 CXCR4 抑制是其组成型活性的结果。BILF1 与 Gα(i1)和 CXCR4 的共表达恢复了 CXCL12 诱导的信号转导。同样,BILF1 与人类组胺 H(4)受体 (H(4)R) 形成异源二聚体。BILF1 抑制组胺诱导的 H(4)R 介导的 Gα(i)信号转导,但不影响组胺与该受体的结合。这些数据表明,BILF1 对 Gα(i)偶联 GPCR 的功能交叉调节发生在 G 蛋白水平,即使这些 GPCR 组装在异源寡聚复合物中。