Suppr超能文献

症状是否成群出现?对 11 个自杀意念及相关症状的单病例时间序列进行探索性二次动态时间 warp 分析。

Symptoms of a feather flock together? An exploratory secondary dynamic time warp analysis of 11 single case time series of suicidal ideation and related symptoms.

机构信息

Department of Clinical Psychology, University of Amsterdam, Amsterdam, the Netherlands.

Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands.

出版信息

Behav Res Ther. 2024 Jul;178:104572. doi: 10.1016/j.brat.2024.104572. Epub 2024 May 24.

Abstract

Suicidal ideation fluctuates over time, as does its related risk factors. Little is known about the difference or similarities of the temporal patterns. The current exploratory secondary analysis examines which risk symptoms have similar time dynamics using a mathematical algorithm called dynamic time warping (DTW). Ecological momentary assessment data was used of 11 depressed psychiatric outpatients with suicidal ideation who answered three daytime surveys at semi-random sampling points for a period of three to six months. Patients with 45 assessments or more were included. Results revealed significant inter-individual variability in symptom dynamics and clustering, with certain symptoms often clustering due to similar temporal patterns, notably feeling sad, hopelessness, feeling stuck, and worrying. The directed network analyses shed light on the temporal order, highlighting entrapment and worrying as symptoms strongly related to suicide ideation. Still, all patients also showed unique directed networks. While for some patients changes in entrapment directly preceded change in suicide ideation, the reverse temporal ordering was also found. Relatedly, within some patients, perceived burdensomeness played a pivotal role, whereas in others it was unconnected to other symptoms. The study underscores the individualized nature of symptom dynamics and challenges linear models of progression, advocating for personalized treatment strategies.

摘要

自杀意念随时间波动,相关风险因素也是如此。人们对时间模式的差异或相似性知之甚少。目前的探索性二次分析使用一种称为动态时间 warping(DTW)的数学算法来检查哪些风险症状具有相似的时间动态。使用了 11 名有自杀意念的抑郁精神病门诊患者的生态瞬时评估数据,这些患者在三到六个月的时间内以半随机抽样点回答了三次日间调查。纳入了 45 次评估或更多次评估的患者。结果显示症状动态和聚类存在显著的个体间变异性,某些症状由于相似的时间模式经常聚类,特别是感到悲伤、绝望、感到被困和担忧。有向网络分析揭示了时间顺序,突出了困境和担忧是与自杀意念密切相关的症状。尽管如此,所有患者也表现出独特的有向网络。虽然对于一些患者,困境的变化直接导致自杀意念的变化,但也发现了相反的时间顺序。相关地,在一些患者中,感知到的负担起着关键作用,而在其他患者中,它与其他症状无关。该研究强调了症状动态的个体化性质,挑战了进展的线性模型,倡导个性化的治疗策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验