Systems Pharmacology, Non-Clinical Biomedical Science, Applied Research & Operations, Astellas Pharma Inc., Ibaraki, Japan.
Drug Metab Pharmacokinet. 2024 Jun;56:101011. doi: 10.1016/j.dmpk.2024.101011. Epub 2024 Mar 26.
Physiologically-based pharmacokinetic (PBPK) models and quantitative systems pharmacology (QSP) models have contributed to drug development strategies. The parameters of these models are commonly estimated by capturing observed values using the nonlinear least-squares method. Software packages for PBPK and QSP modeling provide a range of parameter estimation algorithms. To choose the most appropriate method, modelers need to understand the basic concept of each approach. This review provides a general introduction to the key points of parameter estimation with a focus on the PBPK and QSP models, and the respective parameter estimation algorithms. The latter part assesses the performance of five parameter estimation algorithms - the quasi-Newton method, Nelder-Mead method, genetic algorithm, particle swarm optimization, and Cluster Gauss-Newton method - using three examples of PBPK and QSP modeling. The assessment revealed that some parameter estimation results were significantly influenced by the initial values. Moreover, the choice of algorithms demonstrating good estimation results heavily depends on factors such as model structure and the parameters to be estimated. To obtain credible parameter estimation results, it is advisable to conduct multiple rounds of parameter estimation under different conditions, employing various estimation algorithms.
生理药代动力学(PBPK)模型和定量系统药理学(QSP)模型为药物开发策略做出了贡献。这些模型的参数通常通过使用非线性最小二乘法捕捉观察值来估计。用于 PBPK 和 QSP 建模的软件包提供了一系列参数估计算法。为了选择最合适的方法,建模者需要了解每种方法的基本概念。本综述提供了参数估计的要点概述,重点介绍了 PBPK 和 QSP 模型以及各自的参数估计算法。后半部分使用三个 PBPK 和 QSP 建模示例评估了五种参数估计算法(拟牛顿法、Nelder-Mead 法、遗传算法、粒子群优化和聚类高斯牛顿法)的性能。评估结果表明,一些参数估计结果受到初始值的显著影响。此外,表现出良好估计结果的算法的选择在很大程度上取决于模型结构和要估计的参数等因素。为了获得可靠的参数估计结果,建议在不同条件下进行多轮参数估计,并使用各种估计算法。