Asami Shun, Kiga Daisuke, Konagaya Akihiko
Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama-shi, Kanagawa, 226-8503, Japan.
Department of Electrical Engineering and Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
BMC Syst Biol. 2017 Dec 21;11(Suppl 7):129. doi: 10.1186/s12918-017-0513-2.
Drug development considering individual varieties among patients becomes crucial to improve clinical development success rates and save healthcare costs. As a useful tool to predict individual phenomena and correlations among drug characteristics and individual varieties, recently, whole-body physiologically based pharmacokinetic (WB- PBPK) models are getting more attention. WB-PBPK models generally have a lot of drug-related parameters that need to be estimated, and the estimations are difficult because the observed data are limited. Furthermore, parameter estimation in WB-PBPK models may cause overfitting when applying to individual clinical data such as urine/feces drug excretion for each patient in which Cluster Newton Method (CNM) is applicable for parameter estimation. In order to solve this issue, we came up with the idea of constraint-based perturbation analysis of the CNM. The effectiveness of our approach is demonstrated in the case of irinotecan WB-PBPK model using common organ-specific tissue-plasma partition coefficients (Kp) among the patients as constraints in WB-PBPK parameter estimation.
We find strong correlations between age, renal clearance and liver functions in irinotecan WB-PBPK model with personalized physiological parameters by observing the distributions of optimized values of strong convergence drug-related parameters using constraint-based perturbation analysis on CNM. The constraint-based perturbation analysis consists of the following three steps: (1) Estimation of all drug-related parameters for each patient; the parameters include organ-specific Kp. (2) Fixing suitable values of Kp for each organ among all patients identically. (3) Re-estimation of all drug-related parameters other than Kp by using the fixed values of Kp as constraints of CNM.
Constraint-based perturbation analysis could yield new findings when using CNM with appropriate constraints. This method is a new technique to find suitable values and important insights that are masked by CNM without constraints.
考虑患者个体差异的药物研发对于提高临床研发成功率和节省医疗成本至关重要。作为预测个体现象以及药物特性与个体差异之间相关性的有用工具,近年来,全身生理药代动力学(WB-PBPK)模型受到了越来越多的关注。WB-PBPK模型通常有许多需要估计的与药物相关的参数,并且由于观测数据有限,这些估计很困难。此外,当将WB-PBPK模型应用于个体临床数据(如每位患者的尿液/粪便药物排泄数据)时,参数估计可能会导致过拟合,而聚类牛顿法(CNM)适用于此类参数估计。为了解决这个问题,我们提出了基于约束的CNM扰动分析的想法。在伊立替康WB-PBPK模型的案例中,通过将患者间通用的器官特异性组织-血浆分配系数(Kp)作为WB-PBPK参数估计的约束条件,证明了我们方法的有效性。
通过对CNM进行基于约束的扰动分析,观察强收敛药物相关参数优化值的分布,我们发现在具有个性化生理参数的伊立替康WB-PBPK模型中,年龄、肾清除率和肝功能之间存在强相关性。基于约束的扰动分析包括以下三个步骤:(1)估计每位患者的所有药物相关参数;这些参数包括器官特异性Kp。(2)对所有患者相同器官的Kp设定合适的值。(3)将固定的Kp值作为CNM的约束条件,重新估计除Kp之外的所有药物相关参数。
当对CNM使用适当的约束条件时,基于约束的扰动分析可以产生新的发现。该方法是一种新技术,用于找到被无约束的CNM所掩盖的合适值和重要见解。