Suppr超能文献

基因组构建对 RNA-seq 解读和诊断的影响。

Impact of genome build on RNA-seq interpretation and diagnostics.

机构信息

Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.

PEGASE, INRAE, Institut Agro, Rennes, Bretagne, France.

出版信息

Am J Hum Genet. 2024 Jul 11;111(7):1282-1300. doi: 10.1016/j.ajhg.2024.05.005. Epub 2024 Jun 3.

Abstract

Transcriptomics is a powerful tool for unraveling the molecular effects of genetic variants and disease diagnosis. Prior studies have demonstrated that choice of genome build impacts variant interpretation and diagnostic yield for genomic analyses. To identify the extent genome build also impacts transcriptomics analyses, we studied the effect of the hg19, hg38, and CHM13 genome builds on expression quantification and outlier detection in 386 rare disease and familial control samples from both the Undiagnosed Diseases Network and Genomics Research to Elucidate the Genetics of Rare Disease Consortium. Across six routinely collected biospecimens, 61% of quantified genes were not influenced by genome build. However, we identified 1,492 genes with build-dependent quantification, 3,377 genes with build-exclusive expression, and 9,077 genes with annotation-specific expression across six routinely collected biospecimens, including 566 clinically relevant and 512 known OMIM genes. Further, we demonstrate that between builds for a given gene, a larger difference in quantification is well correlated with a larger change in expression outlier calling. Combined, we provide a database of genes impacted by build choice and recommend that transcriptomics-guided analyses and diagnoses are cross referenced with these data for robustness.

摘要

转录组学是揭示遗传变异和疾病诊断的分子效应的强大工具。先前的研究表明,基因组构建的选择会影响基因组分析中变体的解释和诊断率。为了确定基因组构建是否也会影响转录组学分析,我们研究了 hg19、hg38 和 CHM13 基因组构建对 386 个来自未确诊疾病网络和阐明罕见病遗传学基因组研究联盟的罕见病和家族对照样本的表达定量和异常值检测的影响。在六个常规收集的生物样本中,61%的定量基因不受基因组构建的影响。然而,我们在六个常规收集的生物样本中发现了 1492 个具有构建依赖性定量的基因、3377 个具有构建特异性表达的基因和 9077 个具有注释特异性表达的基因,包括 566 个临床相关和 512 个已知的 OMIM 基因。此外,我们证明,对于给定基因,在构建之间的定量差异越大,表达异常值调用的变化就越大。综上所述,我们提供了一个受构建选择影响的基因数据库,并建议将转录组学指导的分析和诊断与这些数据进行交叉参考,以提高稳健性。

相似文献

1
Impact of genome build on RNA-seq interpretation and diagnostics.
Am J Hum Genet. 2024 Jul 11;111(7):1282-1300. doi: 10.1016/j.ajhg.2024.05.005. Epub 2024 Jun 3.
2
Impact of genome build on RNA-seq interpretation and diagnostics.
medRxiv. 2024 Jan 12:2024.01.11.24301165. doi: 10.1101/2024.01.11.24301165.
3
Identifying suitable tools for variant detection and differential gene expression using RNA-seq data.
Genomics. 2020 May;112(3):2166-2172. doi: 10.1016/j.ygeno.2019.12.011. Epub 2019 Dec 17.
4
Expanding the Boundaries of RNA Sequencing as a Diagnostic Tool for Rare Mendelian Disease.
Am J Hum Genet. 2019 Mar 7;104(3):466-483. doi: 10.1016/j.ajhg.2019.01.012. Epub 2019 Feb 28.
5
Assessing the impact of human genome annotation choice on RNA-seq expression estimates.
BMC Bioinformatics. 2013;14 Suppl 11(Suppl 11):S8. doi: 10.1186/1471-2105-14-S11-S8. Epub 2013 Nov 4.
7
Diagnostic utility of transcriptome sequencing for rare Mendelian diseases.
Genet Med. 2020 Mar;22(3):490-499. doi: 10.1038/s41436-019-0672-1. Epub 2019 Oct 14.
9
Uncovering Clinically Relevant Gene Fusions with Integrated Genomic and Transcriptomic Profiling of Metastatic Cancers.
Clin Cancer Res. 2021 Jan 15;27(2):522-531. doi: 10.1158/1078-0432.CCR-20-1900. Epub 2020 Nov 4.

引用本文的文献

3
Clinical validation of RNA sequencing for Mendelian disorder diagnostics.
Am J Hum Genet. 2025 Apr 3;112(4):779-792. doi: 10.1016/j.ajhg.2025.02.006. Epub 2025 Mar 4.
4
Transcriptome-wide outlier approach identifies individuals with minor spliceopathies.
medRxiv. 2025 Jan 3:2025.01.02.24318941. doi: 10.1101/2025.01.02.24318941.
5
GREGoR: Accelerating Genomics for Rare Diseases.
ArXiv. 2024 Dec 18:arXiv:2412.14338v1.

本文引用的文献

1
Temporal dynamics of the multi-omic response to endurance exercise training.
Nature. 2024 May;629(8010):174-183. doi: 10.1038/s41586-023-06877-w. Epub 2024 May 1.
2
COSMIC: a curated database of somatic variants and clinical data for cancer.
Nucleic Acids Res. 2024 Jan 5;52(D1):D1210-D1217. doi: 10.1093/nar/gkad986.
4
A draft human pangenome reference.
Nature. 2023 May;617(7960):312-324. doi: 10.1038/s41586-023-05896-x. Epub 2023 May 10.
5
excluderanges: exclusion sets for T2T-CHM13, GRCm39, and other genome assemblies.
Bioinformatics. 2023 Apr 3;39(4). doi: 10.1093/bioinformatics/btad198.
6
The absence of CFHR3 and CFHR1 genes from the T2T-CHM13 assembly can limit the molecular diagnosis of complement-related diseases.
Eur J Hum Genet. 2023 Jul;31(7):730-732. doi: 10.1038/s41431-023-01350-8. Epub 2023 Apr 10.
8
FixItFelix: improving genomic analysis by fixing reference errors.
Genome Biol. 2023 Feb 21;24(1):31. doi: 10.1186/s13059-023-02863-7.
10
Dyskeratosis congenita and telomere biology disorders.
Hematology Am Soc Hematol Educ Program. 2022 Dec 9;2022(1):637-648. doi: 10.1182/hematology.2022000394.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验