U-Care Medical srl, Corso Castelfidardo 30A, 10129, Turin, Italy.
Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium.
Crit Care. 2024 Jun 4;28(1):189. doi: 10.1186/s13054-024-04954-8.
The aim of this retrospective cohort study was to develop and validate on multiple international datasets a real-time machine learning model able to accurately predict persistent acute kidney injury (AKI) in the intensive care unit (ICU).
We selected adult patients admitted to ICU classified as AKI stage 2 or 3 as defined by the "Kidney Disease: Improving Global Outcomes" criteria. The primary endpoint was the ability to predict AKI stage 3 lasting for at least 72 h while in the ICU. An explainable tree regressor was trained and calibrated on two tertiary, urban, academic, single-center databases and externally validated on two multi-centers databases.
A total of 7759 ICU patients were enrolled for analysis. The incidence of persistent stage 3 AKI varied from 11 to 6% in the development and internal validation cohorts, respectively and 19% in external validation cohorts. The model achieved area under the receiver operating characteristic curve of 0.94 (95% CI 0.92-0.95) in the US external validation cohort and 0.85 (95% CI 0.83-0.88) in the Italian external validation cohort.
A machine learning approach fed with the proper data pipeline can accurately predict onset of Persistent AKI Stage 3 during ICU patient stay in retrospective, multi-centric and international datasets. This model has the potential to improve management of AKI episodes in ICU if implemented in clinical practice.
本回顾性队列研究旨在开发和验证一个实时机器学习模型,该模型能够在多个国际数据集上准确预测重症监护病房(ICU)中持续急性肾损伤(AKI)。
我们选择了被分类为 AKI 第 2 或 3 期的 ICU 成人患者,这是根据“肾脏病:改善全球预后”标准定义的。主要终点是预测 ICU 内持续至少 72 小时的 AKI 第 3 期的能力。可解释的树回归模型在两个三级、城市、学术、单中心数据库上进行了训练和校准,并在两个多中心数据库上进行了外部验证。
共纳入 7759 例 ICU 患者进行分析。持续 AKI 第 3 期的发生率在开发和内部验证队列中分别为 11%至 6%,在外部验证队列中为 19%。该模型在 US 外部验证队列中的受试者工作特征曲线下面积为 0.94(95%CI 0.92-0.95),在意大利外部验证队列中的面积为 0.85(95%CI 0.83-0.88)。
基于适当的数据管道的机器学习方法可以准确预测 ICU 患者住院期间持续 AKI 第 3 期的发病情况。如果在临床实践中实施,该模型有可能改善 ICU 中 AKI 发作的管理。