Suppr超能文献

连续且早期预测危重症患者未来中重度急性肾损伤:机器学习模型的建立和多中心、多国家外部验证。

Continuous and early prediction of future moderate and severe Acute Kidney Injury in critically ill patients: Development and multi-centric, multi-national external validation of a machine-learning model.

机构信息

U-Care Medical srl, Torino, Italy.

CNR-IFC, Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension, Reggio Calabria, Italy.

出版信息

PLoS One. 2023 Jul 25;18(7):e0287398. doi: 10.1371/journal.pone.0287398. eCollection 2023.

Abstract

BACKGROUND

Acute Kidney Injury (AKI) is a major complication in patients admitted to Intensive Care Units (ICU), causing both clinical and economic burden on the healthcare system. This study develops a novel machine-learning (ML) model to predict, with several hours in advance, the AKI episodes of stage 2 and 3 (according to KDIGO definition) acquired in ICU.

METHODS

A total of 16'760 ICU adult patients from 145 different ICU centers and 3 different countries (US, Netherland, Italy) are retrospectively enrolled for the study. Every hour the model continuously analyzes the routinely-collected clinical data to generate a new probability of developing AKI stage 2 and 3, according to KDIGO definition, during the ICU stay.

RESULTS

The predictive model obtains an auROC of 0.884 for AKI (stage 2/3 KDIGO) prediction, when evaluated on the internal test set composed by 1'749 ICU stays from US and EU centers. When externally tested on a multi-centric US dataset of 6'985 ICU stays and multi-centric Italian dataset of 1'025 ICU stays, the model achieves an auROC of 0.877 and of 0.911, respectively. In all datasets, the time between model prediction and AKI (stage 2/3 KDIGO) onset is at least of 14 hours after the first day of ICU hospitalization.

CONCLUSIONS

In this study, a novel ML model for continuous and early AKI (stage 2/3 KDIGO) prediction is successfully developed, leveraging only routinely-available data. It continuously predicts AKI episodes during ICU stay, at least 14 hours in advance when the AKI episode happens after the first 24 hours of ICU admission. Its performances are validated in an extensive, multi-national and multi-centric cohort of ICU adult patients. This ML model overcomes the main limitations of currently available predictive models. The benefits of its real-world implementation enable an early proactive clinical management and the prevention of AKI episodes in ICU patients. Furthermore, the software could be directly integrated with IT system of the ICU.

摘要

背景

急性肾损伤 (AKI) 是重症监护病房 (ICU) 患者的主要并发症,给医疗系统带来了临床和经济负担。本研究开发了一种新的机器学习 (ML) 模型,可在数小时前预测 ICU 获得的 2 期和 3 期 (根据 KDIGO 定义) AKI 发作。

方法

本研究共纳入来自 145 个不同 ICU 中心和 3 个不同国家(美国、荷兰、意大利)的 16760 名成年 ICU 患者。该模型每小时连续分析常规收集的临床数据,根据 KDIGO 定义,在 ICU 住院期间生成新的发生 AKI 2 期和 3 期的概率。

结果

该预测模型在由美国和欧盟中心的 1749 个 ICU 入住组成的内部测试集中,对 AKI(KDIGO 2/3 期)预测的 auROC 为 0.884。当在多中心美国数据集的 6985 个 ICU 入住和多中心意大利数据集的 1025 个 ICU 入住上进行外部测试时,该模型的 auROC 分别为 0.877 和 0.911。在所有数据集中,模型预测与 AKI(KDIGO 2/3 期)发作之间的时间至少为 ICU 入院后第 1 天的 14 小时后。

结论

在这项研究中,成功开发了一种新的用于连续和早期 AKI(KDIGO 2/3 期)预测的 ML 模型,仅利用常规可用数据。它在 ICU 住院期间持续预测 AKI 发作,在 ICU 入院后 24 小时内发生 AKI 发作时至少提前 14 小时预测。它在广泛的、多国家和多中心的 ICU 成年患者队列中得到了验证。该 ML 模型克服了现有预测模型的主要限制。其实际应用的好处可实现 ICU 患者的早期主动临床管理和预防 AKI 发作。此外,该软件可以直接与 ICU 的 IT 系统集成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9944/10368244/4c85240841ac/pone.0287398.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验