过程挖掘以研究临床前因与职业运动中受伤风险、严重程度和重返赛场之间的关系。

Process mining to investigate the relationship between clinical antecedents and injury risk, severity and return to play in professional sports.

作者信息

Pi-Rusiñol Ramon, Verhagen Evert, Blanch Miriam, Rodas Font Gil

机构信息

FC Barcelona Medical Department, FIFA Medical Excellence Center, and Barça Innovation Hub, Barcelona, Spain.

Amsterdam Collaboration on Health & Safety in Sports, Department of Public and Occupational Health, Amsterdam Movement Sciences, Amsterdam UMC, Amsterdam, Netherlands.

出版信息

BMJ Open Sport Exerc Med. 2024 Jun 2;10(2):e001890. doi: 10.1136/bmjsem-2024-001890. eCollection 2024.

Abstract

OBJECTIVE

This paper presents an exploratory case study focusing on the applicability and value of process mining in a professional sports healthcare setting. We explore whether process mining can be retrospectively applied to readily available data at a professional sports club (Football Club Barcelona) and whether it can be used to obtain insights related to care flows.

DESIGN

Our study used discovery process mining to detect patterns and trends in athletes' Post-Pre-Participation Medical Evaluation injury route, encompassing five phases for analysis and interpretation.

RESULTS

We examined preprocessed data in event log format to determine the injury status of athletes in respective baseline groups (healthy or pathological). Our analysis found a link between thigh muscle injuries and later ankle joint problems. The process model found three loops with recurring injuries, the most common of which were thigh muscle injuries. There were no differences in injury rates or the median number of days to return to play between the healthy and pathological groups.

CONCLUSIONS

This study explored the applicability and value of process mining in a professional sports healthcare setting. We established that process mining can be retrospectively applied to readily available data at a professional sports club and that this approach can be used to obtain insights related to sports healthcare flows.

摘要

目的

本文介绍了一项探索性案例研究,重点关注过程挖掘在职业体育医疗环境中的适用性和价值。我们探讨了过程挖掘是否可以追溯应用于职业体育俱乐部(巴塞罗那足球俱乐部)的现有数据,以及它是否可用于获取与护理流程相关的见解。

设计

我们的研究使用发现过程挖掘来检测运动员赛前-赛后医学评估损伤路径中的模式和趋势,包括五个分析和解释阶段。

结果

我们检查了事件日志格式的预处理数据,以确定各基线组(健康或患病)运动员的损伤状态。我们的分析发现大腿肌肉损伤与随后的踝关节问题之间存在联系。过程模型发现了三个存在反复损伤的循环,其中最常见的是大腿肌肉损伤。健康组和患病组在损伤率或恢复比赛的中位天数方面没有差异。

结论

本研究探讨了过程挖掘在职业体育医疗环境中的适用性和价值。我们确定过程挖掘可以追溯应用于职业体育俱乐部的现有数据,并且这种方法可用于获取与体育医疗流程相关的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e688/11149139/8bfb7ae8c099/bmjsem-2024-001890f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索