Alessio Maristella, Schäfer Tobias, Jagau Thomas-C, Grüneis Andreas
Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria.
Phys Chem Chem Phys. 2025 Jul 23;27(29):15474-15485. doi: 10.1039/d5cp01059d.
We investigate electronic states and magnetic properties of transition-metal atoms on surfaces using projection-based density embedding that combines equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) theory with density functional theory (DFT). As a case study, we explore Co adsorbed on MgO(001), an ideal model for single-atom magnet design, known for its record magnetic anisotropy among transition-metal adatoms. Periodic DFT-based calculations of the magnetic anisotropy energy, , the energy required to rotate the magnetization from parallel to perpendicular relative to the surface normal, predict in-plane magnetic anisotropy, contradicting the experimentally observed easy-axis anisotropy. This failure stems from the inability of the approximate density functionals to describe the multiconfigurational, non-aufbau spin states of Co/MgO(001). In contrast, embedded EOM-CCSD calculations on Co/MgO finite models of the adsorption complex capture the system's unquenched orbital angular momentum ( ≈ 3) and strong spin-orbit coupling, leading to easy-axis anisotropy and a spin-inversion energy barrier that agrees with experiment within spectroscopic accuracy. When treating both the oxygen adsorption site and the Co magnetic center at the EOM-CCSD level of theory, embedded calculations accurately reproduce the state ordering, spin-orbit coupling, and susceptibility curve of all-atom EOM-CCSD calculations. These results demonstrate that embedded EOM-CCSD provides a reliable description of the electronic states and magnetic properties of magnetic adsorbates on surfaces, offering a robust framework for future investigations of surface-bound magnetic systems.
我们使用基于投影的密度嵌入方法研究表面上过渡金属原子的电子态和磁性,该方法将运动方程耦合簇单双激发(EOM - CCSD)理论与密度泛函理论(DFT)相结合。作为一个案例研究,我们探索吸附在MgO(001)上的Co,这是单原子磁体设计的理想模型,因其在过渡金属吸附原子中具有创纪录的磁各向异性而闻名。基于周期性DFT的磁各向异性能量计算,即将磁化强度从平行于表面法线旋转到垂直于表面法线所需的能量,预测出平面内磁各向异性,这与实验观察到的易轴各向异性相矛盾。这种失败源于近似密度泛函无法描述Co/MgO(001)的多组态、非构造自旋态。相比之下,对吸附复合物的Co/MgO有限模型进行的嵌入EOM - CCSD计算捕捉到了系统未淬灭的轨道角动量(≈3)和强自旋 - 轨道耦合,从而导致易轴各向异性和自旋反转能垒,在光谱精度范围内与实验结果相符。当在EOM - CCSD理论水平上处理氧吸附位点和Co磁中心时,嵌入计算准确地再现了全原子EOM - CCSD计算的态序、自旋 - 轨道耦合和磁化率曲线。这些结果表明,嵌入EOM - CCSD为表面上磁性吸附物的电子态和磁性提供了可靠的描述,为未来表面结合磁系统的研究提供了一个强大的框架。