György Hevesy Doctoral School, Institute of Chemistry, ELTE Eötvös Loránd University, H-1117Budapest, Hungary.
Laboratory of Theoretical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518Budapest 112, Hungary.
J Chem Theory Comput. 2022 Nov 8;18(11):6794-6801. doi: 10.1021/acs.jctc.2c00624. Epub 2022 Oct 21.
The CC2 and ADC(2) wave function models and their spin-component scaled modifications are adopted for predicting vertical ionization potentials (VIPs) and electron affinities (VEAs). The ionic solutions are obtained as electronic excitations in the continuum orbital formalism, making possible the use of existing, widespread quantum chemistry codes with minimal modifications, in full consistency with the treatment of charge transfer excitations. The performance of different variants is evaluated via benchmark calculations on various sets from previous works, containing small- and medium-sized systems, including the nucleobases. It is shown that with the spin-scaled approximate methods, in particular the scaled opposite-spin variant of the ADC(2) method, the accuracy of EOM-CCSD is achievable at a fraction of the computational cost, also outperforming many common electron propagator approaches.
采用 CC2 和 ADC(2) 波函数模型及其自旋分量标度修正来预测垂直电离势 (VIP) 和电子亲和能 (VEA)。离子溶液作为连续轨道形式的电子激发来获得,使得可以使用现有的、广泛使用的量子化学代码进行最小修改,与电荷转移激发的处理完全一致。通过对来自先前工作的各种数据集的基准计算来评估不同变体的性能,这些数据集包含中小系统,包括碱基。结果表明,使用自旋分量标度近似方法,特别是 ADC(2) 方法的相反自旋标度变体,可以以计算成本的一小部分实现 EOM-CCSD 的准确性,并且优于许多常见的电子传播子方法。