Suppr超能文献

我们能否利用肩部CT扫描和人工智能对低骨密度进行机会性筛查?

Can we screen opportunistically for low bone mineral density using CT scans of the shoulder and artificial intelligence?

作者信息

Sebro Ronnie, De la Garza-Ramos Cynthia

机构信息

Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, FL 32224, United States.

Department of Radiology, Mayo Clinic, Jacksonville, FL 32224, United States.

出版信息

Br J Radiol. 2024 Aug 1;97(1160):1450-1460. doi: 10.1093/bjr/tqae109.

Abstract

OBJECTIVE

To evaluate whether the CT attenuation of bones seen on shoulder CT scans could be used to predict low bone mineral density (BMD) (osteopenia/osteoporosis), and to compare the performance of two machine learning models to predict low BMD.

METHODS

In this study, we evaluated 194 patients aged 50 years or greater (69.2 ± 9.1 years; 170 females) who underwent unenhanced shoulder CT scans and dual-energy X-ray absorptiometry within 1 year of each other between January 1, 2010, and December 31, 2021. The CT attenuation of the humerus, glenoid, coracoid, acromion, clavicle, first, second, and third ribs was obtained using 3D-Slicer. Support vector machines (SVMs) and k-nearest neighbours (kNN) were used to predict low BMD. DeLong test was used to compare the areas under the curve (AUCs).

RESULTS

A CT attenuation of 195.4 Hounsfield Units of the clavicle had a sensitivity of 0.577, specificity of 0.781, and AUC of 0.701 to predict low BMD. In the test dataset, the SVM had sensitivity of 0.686, specificity of 1.00, and AUC of 0.857, while the kNN model had sensitivity of 0.966, specificity of 0.200, and AUC of 0.583. The SVM was superior to the CT attenuation of the clavicle (P = .003) but not better than the kNN model (P = .098).

CONCLUSION

The CT attenuation of the clavicle was best for predicting low BMD; however, a multivariable SVM was superior for predicting low BMD.

ADVANCES IN KNOWLEDGE

SVM utilizing the CT attenuations at many sites was best for predicting low BMD.

摘要

目的

评估肩部CT扫描所见骨骼的CT衰减值是否可用于预测低骨密度(BMD)(骨质减少/骨质疏松),并比较两种机器学习模型预测低BMD的性能。

方法

在本研究中,我们评估了194例年龄在50岁及以上(69.2±9.1岁;170例女性)的患者,这些患者在2010年1月1日至2021年12月31日期间的1年内先后接受了非增强肩部CT扫描和双能X线吸收法检查。使用3D-Slicer获取肱骨、肩胛盂、喙突、肩峰、锁骨、第一、第二和第三肋骨的CT衰减值。使用支持向量机(SVM)和k近邻(kNN)来预测低BMD。采用德龙检验比较曲线下面积(AUC)。

结果

锁骨的CT衰减值为195.4亨氏单位时,预测低BMD的灵敏度为0.577,特异度为0.781,AUC为0.701。在测试数据集中,SVM的灵敏度为0.686,特异度为1.00,AUC为0.857,而kNN模型的灵敏度为0.966,特异度为0.200,AUC为0.583。SVM优于锁骨的CT衰减值(P = 0.003),但不比kNN模型更好(P = 0.098)。

结论

锁骨的CT衰减值对预测低BMD最有效;然而,多变量SVM在预测低BMD方面更具优势。

知识进展

利用多个部位CT衰减值的SVM在预测低BMD方面表现最佳。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验