Suppr超能文献

基于腕部和前臂CT扫描的骨质疏松症机会性筛查的机器学习

Machine Learning for Opportunistic Screening for Osteoporosis from CT Scans of the Wrist and Forearm.

作者信息

Sebro Ronnie, De la Garza-Ramos Cynthia

机构信息

Mayo Clinic Florida, Department of Radiology, Jacksonville, FL 32224, USA.

Center for Augmented Intelligence, Mayo Clinic Florida, Department of Radiology, Jacksonville, FL 32224, USA.

出版信息

Diagnostics (Basel). 2022 Mar 11;12(3):691. doi: 10.3390/diagnostics12030691.

Abstract

: We investigated whether opportunistic screening for osteoporosis can be done from computed tomography (CT) scans of the wrist/forearm using machine learning. A retrospective study of 196 patients aged 50 years or greater who underwent CT scans of the wrist/forearm and dual-energy X-ray absorptiometry (DEXA) scans within 12 months of each other was performed. Volumetric segmentation of the forearm, carpal, and metacarpal bones was performed to obtain the mean CT attenuation of each bone. The correlations of the CT attenuations of each of the wrist/forearm bones and their correlations to the DEXA measurements were calculated. The study was divided into training/validation (n = 96) and test (n = 100) datasets. The performance of multivariable support vector machines (SVMs) was evaluated in the test dataset and compared to the CT attenuation of the distal third of the radial shaft (radius 33%). There were positive correlations between each of the CT attenuations of the wrist/forearm bones, and with DEXA measurements. A threshold hamate CT attenuation of 170.2 Hounsfield units had a sensitivity of 69.2% and a specificity of 77.1% for identifying patients with osteoporosis. The radial-basis-function (RBF) kernel SVM (AUC = 0.818) was the best for predicting osteoporosis with a higher AUC than other models and better than the radius 33% (AUC = 0.576) ( = 0.020). Opportunistic screening for osteoporosis could be performed using CT scans of the wrist/forearm. Multivariable machine learning techniques, such as SVM with RBF kernels, that use data from multiple bones were more accurate than using the CT attenuation of a single bone.

摘要

我们研究了能否利用机器学习,通过手腕/前臂的计算机断层扫描(CT)来进行骨质疏松症的机会性筛查。对196名年龄在50岁及以上的患者进行了一项回顾性研究,这些患者在彼此相隔12个月内分别接受了手腕/前臂的CT扫描和双能X线吸收法(DEXA)扫描。对前臂、腕骨和掌骨进行体积分割,以获得每块骨头的平均CT衰减值。计算了手腕/前臂各块骨头的CT衰减值之间的相关性及其与DEXA测量值的相关性。该研究分为训练/验证数据集(n = 96)和测试数据集(n = 100)。在测试数据集中评估了多变量支持向量机(SVM)的性能,并与桡骨远端三分之一处(桡骨33%)的CT衰减值进行了比较。手腕/前臂各块骨头的CT衰减值之间以及与DEXA测量值之间均存在正相关。对于识别骨质疏松症患者,钩骨CT衰减阈值为170.2亨氏单位时,灵敏度为69.2%,特异性为77.1%。径向基函数(RBF)核SVM(AUC = 0.818)在预测骨质疏松症方面表现最佳,其AUC高于其他模型,且优于桡骨33%处的CT衰减值(AUC = 0.576)(P = 0.020)。利用手腕/前臂的CT扫描可以进行骨质疏松症的机会性筛查。多变量机器学习技术,如使用RBF核的SVM,利用来自多块骨头的数据比使用单块骨头的CT衰减值更准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38be/8947723/5bde63d7fcdb/diagnostics-12-00691-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验