Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0041624. doi: 10.1128/aem.00416-24. Epub 2024 Jun 5.
Ethylene glycol (EG) is a widely used industrial chemical with manifold applications and also generated in the degradation of plastics such as polyethylene terephthalate. RHA1 (RHA1), a potential biocatalytic chassis, grows on EG. Transcriptomic analyses revealed four clusters of genes potentially involved in EG catabolism: the locus, predicted to encode ycofactocin-dependent lcohol egradation, including the catabolism of EG to glycolate; two GCL clusters, predicted to encode glycolate and glyoxylate catabolism; and the genes, predicted to specify mycofactocin biosynthesis. Bioinformatic analyses further revealed that the and genes are widely distributed in mycolic acid-producing bacteria such as RHA1. Neither Δ nor Δ RHA1 mutant strains grew on EG but grew on acetate. In resting cell assays, the Δ mutant depleted glycolaldehyde but not EG from culture media. These results indicate that encodes a mycofactocin-dependent alcohol dehydrogenase that initiates EG catabolism. In contrast to some mycobacterial strains, the genes did not appear to enable RHA1 to grow on methanol as sole substrate. Finally, a strain of RHA1 adapted to grow ~3× faster on EG contained an overexpressed gene, , predicted to encode an aldehyde dehydrogenase. When incubated with EG, this strain accumulated lower concentrations of glycolaldehyde than RHA1. Moreover, ecotopically expressed increased RHA1's tolerance for EG further suggesting that glycolaldehyde accumulation limits growth of RHA1 on EG. Overall, this study provides insights into the bacterial catabolism of small alcohols and aldehydes and facilitates the engineering of for the upgrading of plastic waste streams.IMPORTANCEEthylene glycol (EG), a two-carbon (C2) alcohol, is produced in high volumes for use in a wide variety of applications. There is burgeoning interest in understanding and engineering the bacterial catabolism of EG, in part to establish circular economic routes for its use. This study identifies an EG catabolic pathway in , a genus of bacteria well suited for biocatalysis. This pathway is responsible for the catabolism of methanol, a C1 feedstock, in related bacteria. Finally, we describe strategies to increase the rate of degradation of EG by increasing the transformation of glycolaldehyde, a toxic metabolic intermediate. This work advances the development of biocatalytic strategies to transform C2 feedstocks.
乙二醇(EG)是一种用途广泛的工业化学品,广泛应用于多种领域,同时也是聚对苯二甲酸乙二醇酯等塑料降解的产物。RHA1(RHA1)是一种潜在的生物催化底盘,可在 EG 上生长。转录组分析显示,有四个基因簇可能参与 EG 分解代谢: locus,预测编码依赖于 ycofactocin 的酒精降解,包括将 EG 转化为甘醇酸;两个 GCL 簇,预测编码甘醇酸和乙醛酸的分解代谢;和 基因,预测指定 mycofactocin 生物合成。生物信息学分析进一步表明, 和 基因在产分枝杆菌酸的细菌中广泛分布,如 RHA1。Δ 或 Δ RHA1 突变株均不能在 EG 上生长,但能在乙酸盐上生长。在静止细胞测定中,Δ 突变株耗尽了培养基中的乙二醇醛但没有耗尽 EG。这些结果表明, 编码一种依赖于 mycofactocin 的醇脱氢酶,该酶启动 EG 分解代谢。与一些分枝杆菌菌株不同, 基因似乎并未使 RHA1 能够以甲醇为唯一底物生长。最后,一株适应在 EG 上生长速度提高约 3 倍的 RHA1 菌株含有一个过表达的基因 ,预测编码一种醛脱氢酶。当与 EG 一起孵育时,该菌株积累的乙二醇醛浓度低于 RHA1。此外,异位表达 进一步增加了 RHA1 对 EG 的耐受性,这表明乙二醇醛的积累限制了 RHA1 在 EG 上的生长。总的来说,这项研究提供了对细菌分解代谢小分子醇和醛的深入了解,并促进了 基因的工程改造,以用于塑料废物流的升级。
乙二醇(EG)是一种二碳(C2)醇,其产量很高,用于多种应用。人们对了解和工程细菌分解代谢 EG 产生了浓厚的兴趣,部分原因是建立其使用的循环经济途径。本研究在 中鉴定了一种 EG 分解代谢途径, 是一种非常适合生物催化的细菌属。该途径负责相关细菌中甲醇(一种 C1 原料)的分解代谢。最后,我们描述了通过增加有毒代谢中间产物乙二醇醛的转化来提高 EG 降解速率的策略。这项工作推进了转化 C2 原料的生物催化策略的发展。