Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa-Shi, Kyoto, 619-0292, Japan.
Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, 630-0192, Japan.
Appl Microbiol Biotechnol. 2024 Dec;108(1):58. doi: 10.1007/s00253-023-12966-7. Epub 2024 Jan 4.
Ethylene glycol is an industrially important diol in many manufacturing processes and a building block of polymers, such as poly(ethylene terephthalate). In this study, we found that a mycolic acid-containing bacterium Rhodococcus jostii RHA1 can grow with ethylene glycol as a sole source of carbon and energy. Deletion of a putative glycolate dehydrogenase gene (RHA1_ro03227) abolished growth with ethylene glycol, indicating that ethylene glycol is assimilated via glycolate in R. jostii RHA1. Transcriptome sequencing and gene deletion analyses revealed that a gene homologous to mycofactocin (MFT)-associated dehydrogenase (RHA1_ro06057), hereafter referred to as EgaA, is essential for ethylene glycol assimilation. Furthermore, egaA deletion also negatively affected the utilization of ethanol, 1-propanol, propylene glycol, and 1-butanol, suggesting that EgaA is involved in the utilization of various alcohols in R. jostii RHA1. Deletion of MFT biosynthetic genes abolished growth with ethylene glycol, indicating that MFT is the physiological electron acceptor of EgaA. Further genetic studies revealed that a putative aldehyde dehydrogenase (RHA1_ro06081) is a major aldehyde dehydrogenase in ethylene glycol metabolism by R. jostii RHA1. KEY POINTS: • Rhodococcus jostii RHA1 can assimilate ethylene glycol via glycolate • A mycofactocin-associated dehydrogenase is involved in the oxidation of ethylene glycol • An aldehyde dehydrogenase gene is important for the ethylene glycol assimilation.
乙二醇是许多制造工艺中重要的二醇,也是聚合物(如聚对苯二甲酸乙二醇酯)的结构单元。在本研究中,我们发现一种含有分枝菌酸的细菌 Rhodococcus jostii RHA1 可以以乙二醇作为唯一的碳源和能源进行生长。缺失一个假定的乙二醇脱氢酶基因(RHA1_ro03227)会使细菌无法利用乙二醇生长,这表明在 R. jostii RHA1 中,乙二醇通过乙二醇酸进行同化。转录组测序和基因缺失分析表明,一个与分枝菌酸菌素(MFT)相关的脱氢酶(RHA1_ro06057)同源的基因,以下称为 EgaA,对于乙二醇同化是必需的。此外,egaA 缺失也会对乙醇、1-丙醇、丙二醇和 1-丁醇的利用产生负面影响,这表明 EgaA 参与了 R. jostii RHA1 中各种醇的利用。MFT 生物合成基因的缺失会使细菌无法利用乙二醇生长,这表明 MFT 是 EgaA 的生理电子受体。进一步的遗传研究表明,一个假定的醛脱氢酶(RHA1_罗06081)是 R. jostii RHA1 代谢乙二醇的主要醛脱氢酶。关键点:
Rhodococcus jostii RHA1 可以通过乙二醇酸同化乙二醇;
一种分枝菌酸菌素相关的脱氢酶参与了乙二醇的氧化;
醛脱氢酶基因对于乙二醇的同化很重要。