Suppr超能文献

β-羟基天冬氨酸循环的实施提高了恶臭假单胞菌在 PET 单体乙二醇上的生长性能。

Implementation of the β-hydroxyaspartate cycle increases growth performance of Pseudomonas putida on the PET monomer ethylene glycol.

机构信息

Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany; Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands.

Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.

出版信息

Metab Eng. 2023 Mar;76:97-109. doi: 10.1016/j.ymben.2023.01.011. Epub 2023 Jan 31.

Abstract

Ethylene glycol (EG) is a promising next generation feedstock for bioprocesses. It is a key component of the ubiquitous plastic polyethylene terephthalate (PET) and other polyester fibers and plastics, used in antifreeze formulations, and can also be generated by electrochemical conversion of syngas, which makes EG a key compound in a circular bioeconomy. The majority of biotechnologically relevant bacteria assimilate EG via the glycerate pathway, a wasteful metabolic route that releases CO and requires reducing equivalents as well as ATP. In contrast, the recently characterized β-hydroxyaspartate cycle (BHAC) provides a more efficient, carbon-conserving route for C2 assimilation. Here we aimed at overcoming the natural limitations of EG metabolism in the industrially relevant strain Pseudomonas putida KT2440 by replacing the native glycerate pathway with the BHAC. We first prototyped the core reaction sequence of the BHAC in Escherichia coli before establishing the complete four-enzyme BHAC in Pseudomonas putida. Directed evolution on EG resulted in an improved strain that exhibits 35% faster growth and 20% increased biomass yield compared to a recently reported P. putida strain that was evolved to grow on EG via the glycerate pathway. Genome sequencing and proteomics highlight plastic adaptations of the genetic and metabolic networks in response to the introduction of the BHAC into P. putida and identify key mutations for its further integration during evolution. Taken together, our study shows that the BHAC can be utilized as 'plug-and-play' module for the metabolic engineering of two important microbial platform organisms, paving the way for multiple applications for a more efficient and carbon-conserving upcycling of EG in the future.

摘要

乙二醇(EG)是一种很有前途的下一代生物工艺原料。它是无处不在的塑料聚对苯二甲酸乙二醇酯(PET)和其他聚酯纤维和塑料的关键组成部分,用于防冻配方,也可以通过合成气的电化学转化生成,这使得 EG 成为循环生物经济中的关键化合物。大多数与生物技术相关的细菌通过甘油酸盐途径同化 EG,这是一种浪费代谢途径,会释放 CO,并需要还原当量和 ATP。相比之下,最近表征的β-羟基天冬氨酸循环(BHAC)为 C2 同化提供了一种更有效、碳节约的途径。在这里,我们旨在通过用 BHAC 替代天然甘油酸盐途径来克服工业相关菌株 Pseudomonas putida KT2440 中 EG 代谢的自然限制。我们首先在大肠杆菌中对 BHAC 的核心反应序列进行了原型设计,然后在 Pseudomonas putida 中建立了完整的四酶 BHAC。对 EG 的定向进化产生了一种改良的菌株,与最近报道的通过甘油酸盐途径在 EG 上生长的 P. putida 菌株相比,该菌株的生长速度提高了 35%,生物量产量增加了 20%。基因组测序和蛋白质组学突出了遗传和代谢网络的适应性变化,以响应将 BHAC 引入 P. putida,并确定了其在进化过程中进一步整合的关键突变。总的来说,我们的研究表明,BHAC 可以作为代谢工程中两个重要微生物平台生物的“即插即用”模块,为未来更高效、碳节约的 EG 循环利用铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验