Meng Kai, Zhang Jianjun, Cheng Bei, Ren Xingang, Xia Zhaosheng, Xu Feiyan, Zhang Liuyang, Yu Jiaguo
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China.
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
Adv Mater. 2024 Aug;36(32):e2406460. doi: 10.1002/adma.202406460. Epub 2024 Jun 10.
Solar fuel synthesis is intriguing because solar energy is abundant and this method compensates for its intermittency. However, most photocatalysts can only absorb UV-to-visible light, while near-infrared (NIR) light remains unexploited. Surprisingly, the charge transfer between ZnO and CuInS quantum dots (QDs) can transform a NIR-inactive ZnO into a NIR-active composite. This strong response is attributed to the increased concentration of free charge carriers in the p-type semiconductor at the interface after the charge migration between ZnO and CuInS, enhancing the localized surface plasmon resonance (LSPR) effect and the NIR response of CuInS. As a paradigm, this ZnO/CuInS heterojunction is used for HO production coupled with glycerin oxidation and demonstrates supreme performance, corroborating the importance of NIR response and efficient charge transfer. Mechanistic studies through contact potential difference (CPD), Hall effect test, and finite element method (FEM) calculation allow for the direct correlation between the NIR response and charge transfer. This approach bypasses the general light response issues, thereby stepping forward to the ambitious goal of harnessing the entire solar spectrum.
太阳能燃料合成很有吸引力,因为太阳能丰富,且这种方法弥补了其间歇性。然而,大多数光催化剂只能吸收紫外光到可见光,而近红外(NIR)光仍未得到利用。令人惊讶的是,ZnO与CuInS量子点(QDs)之间的电荷转移可将无近红外活性的ZnO转变为有近红外活性的复合材料。这种强烈响应归因于ZnO与CuInS之间发生电荷迁移后,界面处p型半导体中自由电荷载流子浓度增加,增强了局域表面等离子体共振(LSPR)效应以及CuInS的近红外响应。作为一个范例,这种ZnO/CuInS异质结用于与甘油氧化耦合的产氢反应,并展现出卓越性能,证实了近红外响应和高效电荷转移的重要性。通过接触电势差(CPD)、霍尔效应测试和有限元方法(FEM)计算进行的机理研究,实现了近红外响应与电荷转移之间的直接关联。这种方法绕过了一般的光响应问题,从而朝着利用整个太阳光谱这一宏伟目标迈进。