Zhang Junyan, Zheng Junjie, Gao Mengyue, Xu Chengjian, Cheng Yanhua, Zhu Meifang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
Adv Mater. 2023 Jul;35(29):e2300813. doi: 10.1002/adma.202300813. Epub 2023 Jun 1.
Thermal protection under extreme conditions requires materials with excellent thermal insulation properties and exceptional mechanical properties to withstand a variety of complex external stresses. Mesoporous silica aerogels are the most widely used insulation materials due to their ultralow thermal conductivity. However, they still suffer from mechanical fragility and structural instability in practical applications. Herein, a nacre-mimetic nanocomposite aerogel, synthesized via in situ growth of inorganic minerals in a lamellar cellulose nanofibrous network, is reported. The multiscale structural adaptation of the inorganic-organic components endows nanocomposite aerogels with rapid configuration recovery during ambient pressure drying. The resulting aerogels show ultralow thermal conductivities (17.4 mW m K at 1.0 atm). These aerogels also integrate challenging mechanical properties, including high compressive stiffness to resist deformation under the pressure of an adult, superelasticity to prevent static and dynamic stress cracking even under the crushing of a vehicle (1.6 t), and high bending flexibility to adapt to any surface. Moreover, they exhibit excellent structural stability under fatigue stress/strain cycles over a wide temperature range (-196 to 200 °C). The combination of high thermal insulation performance and excellent mechanical properties offers a potential material system for robust thermal superinsulation under extreme conditions, especially for aerospace applications.
极端条件下的热防护需要具有优异隔热性能和卓越机械性能的材料,以承受各种复杂的外部应力。介孔二氧化硅气凝胶因其超低的热导率而成为应用最为广泛的隔热材料。然而,在实际应用中,它们仍然存在机械脆性和结构不稳定性的问题。在此,报道了一种通过在层状纤维素纳米纤维网络中原位生长无机矿物合成的仿珍珠母纳米复合气凝胶。无机-有机组分的多尺度结构适应性赋予了纳米复合气凝胶在常压干燥过程中快速的构型恢复能力。所得气凝胶表现出超低的热导率(在1.0个大气压下为17.4 mW·m⁻¹·K⁻¹)。这些气凝胶还兼具具有挑战性的机械性能,包括高抗压刚度以抵抗成年人压力下的变形、超弹性以防止即使在车辆(1.6吨)碾压下的静态和动态应力开裂,以及高弯曲柔韧性以适应任何表面。此外,它们在很宽的温度范围(-196至200°C)的疲劳应力/应变循环下表现出优异的结构稳定性。高隔热性能和优异机械性能的结合为极端条件下强大的热超绝缘提供了一种潜在的材料体系,特别是在航空航天应用中。