Suppr超能文献

计算机筛选加速纳米载体设计以实现高效 mRNA 递送。

In Silico Screening Accelerates Nanocarrier Design for Efficient mRNA Delivery.

机构信息

Nuntius Therapeutics Limited, London, W10 5JJ, UK.

出版信息

Adv Sci (Weinh). 2024 Aug;11(30):e2401935. doi: 10.1002/advs.202401935. Epub 2024 Jun 5.

Abstract

Lipidic nanocarriers are a broad class of lipid-based vectors with proven potential for packaging and delivering emerging nucleic acid therapeutics. An important early step in the clinical development cycle is large-scale screening of diverse formulation libraries to assess particle quality and payload delivery efficiency. Due to the size of the screening space, this process can be both costly and time-consuming. To address this, computational models capable of predicting clinically relevant physio-chemical properties of dendrimer-lipid nanocarriers, along with their mRNA payload delivery efficiency in human cells are developed. The models are then deployed on a large theoretical nanocarrier pool consisting of over 4.5 million formulations. Top predictions are synthesised for validation using cell-based assays, leading to the discovery of a high quality, high performing, candidate. The methods reported here enable rapid, high-throughput, in silico pre-screening for high-quality candidates, and have great potential to reduce the cost and time required to bring mRNA therapies to the clinic.

摘要

脂质纳米载体是一类广泛的基于脂质的载体,具有包装和递呈新兴核酸治疗药物的潜力。在临床开发周期的早期重要步骤是对多样化的制剂库进行大规模筛选,以评估颗粒质量和有效荷载传递效率。由于筛选空间的大小,该过程既昂贵又耗时。为了解决这个问题,开发了能够预测树枝状大分子脂质纳米载体的临床相关物理化学特性的计算模型,以及它们在人细胞中 mRNA 有效荷载传递效率的模型。然后,将这些模型部署在一个由超过 450 万种制剂组成的大型理论纳米载体库上。使用基于细胞的测定法对预测结果进行合成验证,从而发现了一种高质量、高性能的候选物。这里报道的方法可以实现快速、高通量的基于计算机的高质地候选物的预筛选,并且有很大的潜力可以降低将 mRNA 疗法推向临床所需的成本和时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f37/11321627/5aac0ce829da/ADVS-11-2401935-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验