Suppr超能文献

大面积自修复嵌段共聚物膜用于能量转换。

Large-area, self-healing block copolymer membranes for energy conversion.

机构信息

Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.

Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland.

出版信息

Nature. 2024 Jun;630(8018):866-871. doi: 10.1038/s41586-024-07481-2. Epub 2024 Jun 5.

Abstract

Membranes are widely used for separation processes in applications such as water desalination, batteries and dialysis, and are crucial in key sectors of our economy and society. The majority of technologically exploited membranes are based on solid polymers and function as passive barriers, whose transport characteristics are governed by their chemical composition and nanostructure. Although such membranes are ubiquitous, it has proved challenging to maximize selectivity and permeability independently, leading to trade-offs between these pertinent characteristics. Self-assembled biological membranes, in which barrier and transport functions are decoupled, provide the inspiration to address this problem. Here we introduce a self-assembly strategy that uses the interface of an aqueous two-phase system to template and stabilize molecularly thin (approximately 35 nm) biomimetic block copolymer bilayers of scalable area that can exceed 10 cm without defects. These membranes are self-healing, and their barrier function against the passage of ions (specific resistance of approximately 1 MΩ cm) approaches that of phospholipid membranes. The fluidity of these membranes enables straightforward functionalization with molecular carriers that shuttle potassium ions down a concentration gradient with exquisite selectivity over sodium ions. This ion selectivity enables the generation of electric power from equimolar solutions of NaCl and KCl in devices that mimic the electric organ of electric rays.

摘要

膜在海水淡化、电池和透析等应用中的分离过程中得到了广泛应用,在我们的经济和社会的关键领域至关重要。大多数技术上开发的膜都是基于固体聚合物,作为被动屏障,其传输特性由其化学成分和纳米结构决定。尽管这些膜无处不在,但要独立最大化选择性和渗透性一直具有挑战性,导致这些相关特性之间存在权衡。自组装的生物膜,其中屏障和传输功能是解耦的,为解决这个问题提供了灵感。在这里,我们介绍了一种自组装策略,该策略利用双水相体系的界面来模板化和稳定分子级薄(约 35nm)的仿生嵌段共聚物双层,其面积可扩展至超过 10cm 而无缺陷。这些膜具有自修复功能,其对离子(约 1MΩcm 的比电阻)的阻挡功能接近磷脂膜。这些膜的流动性使其能够轻松地用分子载体进行功能化,这些载体可以沿着浓度梯度将钾离子穿梭,对钠离子具有极高的选择性。这种离子选择性使我们能够在模拟电鳐电器官的装置中,从等摩尔浓度的 NaCl 和 KCl 溶液中产生电能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d26/11208134/151f6e89690e/41586_2024_7481_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验