Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
Nat Commun. 2018 Jun 12;9(1):2294. doi: 10.1038/s41467-018-04604-y.
Synthetic polymer membranes, critical to diverse energy-efficient separations, are subject to permeability-selectivity trade-offs that decrease their overall efficacy. These trade-offs are due to structural variations (e.g., broad pore size distributions) in both nonporous membranes used for Angstrom-scale separations and porous membranes used for nano to micron-scale separations. Biological membranes utilize well-defined Angstrom-scale pores to provide exceptional transport properties and can be used as inspiration to overcome this trade-off. Here, we present a comprehensive demonstration of such a bioinspired approach based on pillar[5]arene artificial water channels, resulting in artificial water channel-based block copolymer membranes. These membranes have a sharp selectivity profile with a molecular weight cutoff of ~ 500 Da, a size range challenging to achieve with current membranes, while achieving a large improvement in permeability (~65 L m h bar compared with 4-7 L m h bar) over similarly rated commercial membranes.
合成聚合物膜对于各种节能分离至关重要,但它们存在渗透性-选择性权衡,这降低了它们的整体效率。这种权衡是由于用于埃尺度分离的无孔膜和用于纳米到微米尺度分离的多孔膜的结构变化(例如,较宽的孔径分布)引起的。生物膜利用定义良好的埃尺度孔来提供卓越的传输性能,可以作为克服这种权衡的灵感来源。在这里,我们基于[5]轮烷人工水通道展示了这种仿生方法的综合演示,从而得到了基于人工水通道的嵌段共聚物膜。这些膜具有尖锐的选择性轮廓,分子量截止值约为 500Da,这是目前的膜难以实现的尺寸范围,同时与类似额定的商业膜相比,渗透性有了显著提高(约 65L·m-1·h-1·bar-1,而 4-7L·m-1·h-1·bar-1)。