Suppr超能文献

基于肿瘤脂质代谢基因的机器学习对骨肉瘤的生存预测。

Machine learning survival prediction using tumor lipid metabolism genes for osteosarcoma.

机构信息

Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Renmin Middle Road 139, Changsha, 410011, Hunan, China.

出版信息

Sci Rep. 2024 Jun 5;14(1):12934. doi: 10.1038/s41598-024-63736-y.

Abstract

Osteosarcoma is a primary malignant tumor that commonly affects children and adolescents, with a poor prognosis. The existence of tumor heterogeneity leads to different molecular subtypes and survival outcomes. Recently, lipid metabolism has been identified as a critical characteristic of cancer. Therefore, our study aims to identify osteosarcoma's lipid metabolism molecular subtype and develop a signature for survival outcome prediction. Four multicenter cohorts-TARGET-OS, GSE21257, GSE39058, and GSE16091-were amalgamated into a unified Meta-Cohort. Through consensus clustering, novel molecular subtypes within Meta-Cohort patients were delineated. Subsequent feature selection processes, encompassing analyses of differentially expressed genes between subtypes, univariate Cox analysis, and StepAIC, were employed to pinpoint biomarkers related to lipid metabolism in TARGET-OS. We selected the most effective algorithm for constructing a Lipid Metabolism-Related Signature (LMRS) by utilizing four machine-learning algorithms reconfigured into ten unique combinations. This selection was based on achieving the highest concordance index (C-index) in the test cohort of GSE21257, GSE39058, and GSE16091. We identified two distinct lipid metabolism molecular subtypes in osteosarcoma patients, C1 and C2, with significantly different survival rates. C1 is characterized by increased cholesterol, fatty acid synthesis, and ketone metabolism. In contrast, C2 focuses on steroid hormone biosynthesis, arachidonic acid, and glycerolipid and linoleic acid metabolism. Feature selection in the TARGET-OS identified 12 lipid metabolism genes, leading to a model predicting osteosarcoma patient survival. The LMRS, based on the 12 identified genes, consistently accurately predicted prognosis across TARGET-OS, testing cohorts, and Meta-Cohort. Incorporating 12 published signatures, LMRS showed robust and significantly superior predictive capability. Our results offer a promising tool to enhance the clinical management of osteosarcoma, potentially leading to improved clinical outcomes.

摘要

骨肉瘤是一种常见于儿童和青少年的原发性恶性肿瘤,预后较差。肿瘤异质性的存在导致了不同的分子亚型和生存结果。最近,脂质代谢被确定为癌症的一个关键特征。因此,我们的研究旨在确定骨肉瘤的脂质代谢分子亚型,并开发用于预测生存结果的特征。四个多中心队列-TARGET-OS、GSE21257、GSE39058 和 GSE16091-被合并为一个统一的 Meta-Cohort。通过共识聚类,描绘了 Meta-Cohort 患者中新的分子亚型。随后的特征选择过程包括对亚型之间差异表达基因的分析、单变量 Cox 分析和 StepAIC,用于在 TARGET-OS 中确定与脂质代谢相关的生物标志物。我们选择了最有效的算法,通过将四种机器学习算法重新配置为十种独特的组合,构建了一个脂质代谢相关特征(Lipid Metabolism-Related Signature,LMRS)。这种选择是基于在 GSE21257、GSE39058 和 GSE16091 的测试队列中实现最高的一致性指数(C-index)。我们在骨肉瘤患者中确定了两种不同的脂质代谢分子亚型,C1 和 C2,它们具有显著不同的生存率。C1 表现为胆固醇、脂肪酸合成和酮代谢增加。相比之下,C2 则侧重于类固醇激素生物合成、花生四烯酸、甘油磷脂和亚油酸代谢。在 TARGET-OS 中的特征选择确定了 12 个脂质代谢基因,导致一个预测骨肉瘤患者生存的模型。基于这 12 个鉴定的基因的 LMRS 在 TARGET-OS、测试队列和 Meta-Cohort 中始终准确地预测了预后。整合 12 个已发表的特征,LMRS 显示出稳健且显著优越的预测能力。我们的结果提供了一种有前途的工具,可用于增强骨肉瘤的临床管理,可能会改善临床结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33e0/11153634/c7503b0c7b1c/41598_2024_63736_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验