Suppr超能文献

人工智能与医疗模拟:医学教育的变革格局

Artificial Intelligence and Healthcare Simulation: The Shifting Landscape of Medical Education.

作者信息

Hamilton Allan

机构信息

Artificial Intelligence Division, Arizona Simulation Technology and Education Center (ASTEC) University of Arizona, Tucson, USA.

出版信息

Cureus. 2024 May 6;16(5):e59747. doi: 10.7759/cureus.59747. eCollection 2024 May.

Abstract

The impact of artificial intelligence (AI) will be felt not only in the arena of patient care and deliverable therapies but will also be uniquely disruptive in medical education and healthcare simulation (HCS), in particular. As HCS is intertwined with computer technology, it offers opportunities for rapid scalability with AI and, therefore, will be the most practical place to test new AI applications. This will ensure the acquisition of AI literacy for graduates from the country's various healthcare professional schools. Artificial intelligence has proven to be a useful adjunct in developing interprofessional education and team and leadership skills assessments. Outcome-driven medical simulation has been extensively used to train students in image-centric disciplines such as radiology, ultrasound, echocardiography, and pathology. Allowing students and trainees in healthcare to first apply diagnostic decision support systems (DDSS) under simulated conditions leads to improved diagnostic accuracy, enhanced communication with patients, safer triage decisions, and improved outcomes from rapid response teams. However, the issue of bias, hallucinations, and the uncertainty of emergent properties may undermine the faith of healthcare professionals as they see AI systems deployed in the clinical setting and participating in diagnostic judgments. Also, the demands of ensuring AI literacy in our healthcare professional curricula will place burdens on simulation assets and faculty to adapt to a rapidly changing technological landscape. Nevertheless, the introduction of AI will place increased emphasis on virtual reality platforms, thereby improving the availability of self-directed learning and making it available 24/7, along with uniquely personalized evaluations and customized coaching. Yet, caution must be exercised concerning AI, especially as society's earlier, delayed, and muted responses to the inherent dangers of social media raise serious questions about whether the American government and its citizenry can anticipate the security and privacy guardrails that need to be in place to protect our healthcare practitioners, medical students, and patients.

摘要

人工智能(AI)的影响不仅会体现在患者护理和可提供的治疗领域,尤其还会对医学教育和医疗保健模拟(HCS)产生独特的颠覆性影响。由于医疗保健模拟与计算机技术相互交织,它为人工智能实现快速扩展提供了机会,因此将成为测试新人工智能应用的最实际场所。这将确保该国各医疗专业学校的毕业生具备人工智能素养。事实证明,人工智能在发展跨专业教育以及团队和领导技能评估方面是一种有用的辅助手段。以结果为导向的医学模拟已被广泛用于培训放射学、超声、超声心动图和病理学等以图像为中心学科的学生。让医疗保健领域的学生和实习生首先在模拟条件下应用诊断决策支持系统(DDSS),可提高诊断准确性、增强与患者的沟通、做出更安全的分诊决策,并改善快速反应团队的治疗效果。然而,偏差、幻觉以及新兴特性的不确定性问题,可能会削弱医疗保健专业人员对在临床环境中部署并参与诊断判断的人工智能系统的信心。此外,在我们的医疗专业课程中确保人工智能素养的要求,将给模拟资源和教师带来负担,使其难以适应迅速变化的技术格局。尽管如此,人工智能的引入将更加重视虚拟现实平台,从而提高自主学习的可用性,实现全天候学习,并提供独特的个性化评估和定制辅导。然而,对于人工智能必须谨慎对待,尤其是考虑到社会对社交媒体固有危险的早期、延迟和温和反应,引发了关于美国政府及其公民是否能够预见保护我们的医疗从业者、医学生和患者所需的安全和隐私保护措施的严重问题。

相似文献

9
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

4
Artificial Intelligence in Health Profession Education.健康职业教育中的人工智能
Indian Pediatr. 2025 Jul 25. doi: 10.1007/s13312-025-00145-y.

本文引用的文献

3
Artificial Intelligence and the Simulationists.人工智能与模拟主义者。
Simul Healthc. 2023 Dec 1;18(6):395-399. doi: 10.1097/SIH.0000000000000747. Epub 2023 Sep 20.
8
AI and Medical Education - A 21st-Century Pandora's Box.人工智能与医学教育——一个21世纪的潘多拉魔盒。
N Engl J Med. 2023 Aug 3;389(5):385-387. doi: 10.1056/NEJMp2304993. Epub 2023 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验