Suppr超能文献

Editorial: Applications of artificial intelligence, machine learning, and deep learning in plant breeding.

作者信息

Eftekhari Maliheh, Ma Chuang, Orlov Yuriy L

机构信息

Department of Horticultural Sciences, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China.

出版信息

Front Plant Sci. 2024 May 22;15:1420938. doi: 10.3389/fpls.2024.1420938. eCollection 2024.

Abstract
摘要

相似文献

1
Editorial: Applications of artificial intelligence, machine learning, and deep learning in plant breeding.
Front Plant Sci. 2024 May 22;15:1420938. doi: 10.3389/fpls.2024.1420938. eCollection 2024.
2
Machine Learning-Assisted Approaches in Modernized Plant Breeding Programs.
Genes (Basel). 2023 Mar 23;14(4):777. doi: 10.3390/genes14040777.
3
Advances in for Abiotic Stress Resilience: From 'Omics' to Artificial Intelligence.
Int J Mol Sci. 2021 Sep 29;22(19):10535. doi: 10.3390/ijms221910535.
5
Integrating speed breeding with artificial intelligence for developing climate-smart crops.
Mol Biol Rep. 2022 Dec;49(12):11385-11402. doi: 10.1007/s11033-022-07769-4. Epub 2022 Aug 8.
6
Next-Generation Breeding Strategies for Climate-Ready Crops.
Front Plant Sci. 2021 Jul 21;12:620420. doi: 10.3389/fpls.2021.620420. eCollection 2021.
7
Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction.
Mol Plant. 2022 Nov 7;15(11):1664-1695. doi: 10.1016/j.molp.2022.09.001. Epub 2022 Sep 7.
8
A review of artificial intelligence-assisted omics techniques in plant defense: current trends and future directions.
Front Plant Sci. 2024 Mar 5;15:1292054. doi: 10.3389/fpls.2024.1292054. eCollection 2024.
9
Machine and Deep Learning: Artificial Intelligence Application in Biotic and Abiotic Stress Management in Plants.
Front Biosci (Landmark Ed). 2024 Jan 17;29(1):20. doi: 10.31083/j.fbl2901020.
10
Data-driven approaches to improve water-use efficiency and drought resistance in crop plants.
Plant Sci. 2023 Nov;336:111852. doi: 10.1016/j.plantsci.2023.111852. Epub 2023 Sep 1.

本文引用的文献

1
AI-assisted selection of mating pairs through simulation-based optimized progeny allocation strategies in plant breeding.
Front Plant Sci. 2024 Mar 28;15:1361894. doi: 10.3389/fpls.2024.1361894. eCollection 2024.
2
Revolutionizing crop disease detection with computational deep learning: a comprehensive review.
Environ Monit Assess. 2024 Feb 24;196(3):302. doi: 10.1007/s10661-024-12454-z.
3
A tree species classification model based on improved YOLOv7 for shelterbelts.
Front Plant Sci. 2024 Jan 18;14:1265025. doi: 10.3389/fpls.2023.1265025. eCollection 2023.
4
Special Issue on "Plant Biology and Biotechnology: Focus on Genomics and Bioinformatics 2.0".
Int J Mol Sci. 2023 Dec 18;24(24):17588. doi: 10.3390/ijms242417588.
5
Integrating omics databases for enhanced crop breeding.
J Integr Bioinform. 2023 Jul 25;20(4). doi: 10.1515/jib-2023-0012. eCollection 2023 Dec 1.
6
Editorial: Bioinformatics of genome regulation and systems biology, Volume III.
Front Genet. 2023 May 18;14:1215987. doi: 10.3389/fgene.2023.1215987. eCollection 2023.
7
Multi-omics revolution to promote plant breeding efficiency.
Front Plant Sci. 2022 Dec 8;13:1062952. doi: 10.3389/fpls.2022.1062952. eCollection 2022.
8
Editorial: Bioinformatics of Genome Regulation and Systems Biology.
Front Genet. 2020 Jul 28;11:625. doi: 10.3389/fgene.2020.00625. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验