Suppr超能文献

为伊朗中部干旱地区地下水资源质量参数提供预测模型:以卡尚平原为例

Providing predictive models for quality parameters of groundwater resources in arid areas of central Iran: A case study of kashan plain.

作者信息

Zarajabad Aysan Morovvati, Hadi Mahdi, Nodehi Ramin Nabizadeh, Moradi Mahsa, Ghalhari Mohammad Rezvani, Zeraatkar Abbas, Mahvi Amir Hossein

机构信息

Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.

Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Heliyon. 2024 May 17;10(11):e31493. doi: 10.1016/j.heliyon.2024.e31493. eCollection 2024 Jun 15.

Abstract

Groundwater pollution can occur due to both anthropogenic and natural causes, leading to a decline in water quality and posing a threat to human health and the environment. The pollution of ground water resources with chemical pollutants is often considered. To manage water resources sustainably, ensuring their quality and quantity is crucial. Yet, testing groundwater can be expensive and time-consuming. So, using modeling to predict the chemical parameters of groundwater resources is considered to be an efficient and economical method. In this study, we examined three models to predict groundwater quality in dry regions by using R programming language. The random forest (RF) outperformed the other models in developing predictive models for water quality. Also, the multiple linear regression (MLR) model demonstrated strong performance, particularly in predicting total hardness (TH) in Aran Va Bidgol groundwater resources. The decision tree (DT) model did well but had lower performance than the RF model in predicting quality parameters. This approach can be efficacious in the field of effective management and protection of groundwater resources and enables the assessment of risks related to water resources.

摘要

地下水污染可能由人为和自然原因导致,从而导致水质下降,并对人类健康和环境构成威胁。人们经常考虑化学污染物对地下水资源的污染。为了可持续地管理水资源,确保其质量和数量至关重要。然而,检测地下水可能既昂贵又耗时。因此,使用模型来预测地下水资源的化学参数被认为是一种高效且经济的方法。在本研究中,我们使用R编程语言检验了三种模型来预测干旱地区的地下水质量。在开发水质预测模型方面,随机森林(RF)模型优于其他模型。此外,多元线性回归(MLR)模型表现出色,特别是在预测阿兰-比德戈尔地下水资源的总硬度(TH)方面。决策树(DT)模型表现良好,但在预测质量参数方面的性能低于RF模型。这种方法在有效管理和保护地下水资源领域可能是有效的,并能够评估与水资源相关的风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验