Cannon William R, Britton Samuel, Banwarth-Kuhn Mikahl, Alber Mark
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
Department of Mathematics, University of California, Riverside, California 92505, USA.
J Chem Phys. 2024 Jun 7;160(21). doi: 10.1063/5.0180417.
We demonstrate and characterize a first-principles approach to modeling the mass action dynamics of metabolism. Starting from a basic definition of entropy expressed as a multinomial probability density using Boltzmann probabilities with standard chemical potentials, we derive and compare the free energy dissipation and the entropy production rates. We express the relation between entropy production and the chemical master equation for modeling metabolism, which unifies chemical kinetics and chemical thermodynamics. Because prediction uncertainty with respect to parameter variability is frequently a concern with mass action models utilizing rate constants, we compare and contrast the maximum entropy model, which has its own set of rate parameters, to a population of standard mass action models in which the rate constants are randomly chosen. We show that a maximum entropy model is characterized by a high probability of free energy dissipation rate and likewise entropy production rate, relative to other models. We then characterize the variability of the maximum entropy model predictions with respect to uncertainties in parameters (standard free energies of formation) and with respect to ionic strengths typically found in a cell.
我们展示并描述了一种用于模拟新陈代谢质量作用动力学的第一性原理方法。从使用具有标准化学势的玻尔兹曼概率表示为多项式概率密度的熵的基本定义出发,我们推导并比较了自由能耗散和熵产生率。我们表达了熵产生与用于模拟新陈代谢的化学主方程之间的关系,该关系统一了化学动力学和化学热力学。由于利用速率常数的质量作用模型常常关注参数变异性带来的预测不确定性,我们将具有自身一组速率参数的最大熵模型与速率常数随机选取的标准质量作用模型群体进行比较和对比。我们表明,相对于其他模型,最大熵模型的特征在于自由能耗散率以及同样的熵产生率具有较高的概率。然后,我们针对参数(生成标准自由能)的不确定性以及细胞中通常存在的离子强度,描述了最大熵模型预测的变异性。