Suppr超能文献

使用基于最大熵的模拟预测代谢物浓度、速率常数和翻译后调控及其在……中心代谢中的应用

Prediction of Metabolite Concentrations, Rate Constants and Post-Translational Regulation Using Maximum Entropy-Based Simulations with Application to Central Metabolism of .

作者信息

Cannon William R, Zucker Jeremy D, Baxter Douglas J, Kumar Neeraj, Baker Scott E, Hurley Jennifer M, Dunlap Jay C

机构信息

Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.

Research Computing Group, Pacific Northwest National Laboratory, Richland, WA 99352, USA.

出版信息

Processes (Basel). 2018 Jun;6(6). doi: 10.3390/pr6060063. Epub 2018 May 28.

Abstract

We report the application of a recently proposed approach for modeling biological systems using a maximum entropy production rate principle in lieu of having in vivo rate constants. The method is applied in four steps: (1) a new ordinary differential equation (ODE) based optimization approach based on Marcelin's 1910 mass action equation is used to obtain the maximum entropy distribution; (2) the predicted metabolite concentrations are compared to those generally expected from experiments using a loss function from which post-translational regulation of enzymes is inferred; (3) the system is re-optimized with the inferred regulation from which rate constants are determined from the metabolite concentrations and reaction fluxes; and finally (4) a full ODE-based, mass action simulation with rate parameters and allosteric regulation is obtained. From the last step, the power characteristics and resistance of each reaction can be determined. The method is applied to the central metabolism of and the flow of material through the three competing pathways of upper glycolysis, the non-oxidative pentose phosphate pathway, and the oxidative pentose phosphate pathway are evaluated as a function of the NADP/NADPH ratio. It is predicted that regulation of phosphofructokinase (PFK) and flow through the pentose phosphate pathway are essential for preventing an extreme level of fructose 1,6-bisphophate accumulation. Such an extreme level of fructose 1,6-bisphophate would otherwise result in a glassy cytoplasm with limited diffusion, dramatically decreasing the entropy and energy production rate and, consequently, biological competitiveness.

摘要

我们报告了一种最近提出的方法的应用,该方法使用最大熵产生率原理对生物系统进行建模,以替代体内速率常数。该方法分四个步骤应用:(1)基于1910年马塞兰质量作用方程的一种新的基于常微分方程(ODE)的优化方法用于获得最大熵分布;(2)将预测的代谢物浓度与实验中通常预期的浓度进行比较,使用一个损失函数来推断酶的翻译后调控;(3)利用推断出的调控对系统进行重新优化,从代谢物浓度和反应通量确定速率常数;最后(4)获得一个基于完整ODE的、具有速率参数和变构调节的质量作用模拟。从最后一步可以确定每个反应的功率特性和阻力。该方法应用于[具体生物名称]的中心代谢,并评估了通过上糖酵解、非氧化戊糖磷酸途径和氧化戊糖磷酸途径这三条竞争途径的物质流作为NADP/NADPH比值的函数。据预测,磷酸果糖激酶(PFK)的调控和通过戊糖磷酸途径 的流量对于防止果糖1,6 - 二磷酸积累到极端水平至关重要。否则,如此极端水平的果糖1,6 - 二磷酸会导致细胞质呈玻璃态,扩散受限,显著降低熵和能量产生率,进而降低生物竞争力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a044/8020867/bbf159942b2b/nihms-1061468-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验