HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China.
Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, 310024, China.
Sci China Life Sci. 2024 Sep;67(9):1781-1791. doi: 10.1007/s11427-024-2607-8. Epub 2024 Jun 4.
In the ongoing arms race between bacteria and bacteriophages, bacteriophages have evolved anti-CRISPR proteins to counteract bacterial CRISPR-Cas systems. Recently, AcrIIA25.1 and AcrIIA32 have been found to effectively inhibit the activity of SpyCas9 both in bacterial and human cells. However, their molecular mechanisms remain elusive. Here, we report the cryo-electron microscopy structures of ternary complexes formed by AcrIIA25.1 and AcrIIA32 bound to SpyCas9-sgRNA. Using structural analysis and biochemical experiments, we revealed that AcrIIA25.1 and AcrIIA32 recognize a novel, previously-unidentified anti-CRISPR binding site on SpyCas9. We found that both AcrIIA25.1 and AcrIIA32 directly interact with the WED domain, where they spatially obstruct conformational changes of the WED and PI domains, thereby inhibiting SpyCas9 from recognizing protospacer adjacent motif (PAM) and unwinding double-stranded DNA. In addition, they may inhibit nuclease activity by blocking the dynamic conformational changes of the SpyCas9 surveillance complex. In summary, our data elucidate the inhibition mechanisms of two new anti-CRISPR proteins, provide new strategies for the modulation of SpyCas9 activity, and expand our understanding of the diversity of anti-CRISPR protein inhibition mechanisms.
在细菌和噬菌体之间持续的军备竞赛中,噬菌体进化出了抗 CRISPR 蛋白来对抗细菌的 CRISPR-Cas 系统。最近,发现 AcrIIA25.1 和 AcrIIA32 能够有效抑制 SpyCas9 在细菌和人类细胞中的活性。然而,它们的分子机制仍不清楚。在这里,我们报告了 AcrIIA25.1 和 AcrIIA32 与 SpyCas9-sgRNA 结合形成的三元复合物的低温电子显微镜结构。通过结构分析和生化实验,我们揭示了 AcrIIA25.1 和 AcrIIA32 识别 SpyCas9 上一个新的、以前未被识别的抗 CRISPR 结合位点。我们发现 AcrIIA25.1 和 AcrIIA32 都直接与 WED 结构域相互作用,在那里它们空间上阻碍了 WED 和 PI 结构域的构象变化,从而抑制 SpyCas9 识别原间隔相邻基序 (PAM) 和双链 DNA 的解旋。此外,它们可能通过阻止 SpyCas9 监测复合物的动态构象变化来抑制核酸酶活性。总之,我们的数据阐明了两种新的抗 CRISPR 蛋白的抑制机制,为调节 SpyCas9 活性提供了新的策略,并扩展了我们对抗 CRISPR 蛋白抑制机制多样性的理解。